| | |
| | | #include "mini_blas.h" |
| | | #include "gemm.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | void gemm_bin(int M, int N, int K, float ALPHA, |
| | | char *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | char A_PART = A[i*lda+k]; |
| | | if(A_PART){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += B[k*ldb+j]; |
| | | } |
| | | } else { |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] -= B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | | float *m = calloc(rows*cols, sizeof(float)); |
| | | for(i = 0; i < rows*cols; ++i){ |
| | | m[i] = (float)rand()/RAND_MAX; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | |
| | | gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); |
| | | } |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) |
| | | |
| | | #define OSXSAVEFlag (1UL<<27) |
| | | #define AVXFlag ((1UL<<28)|OSXSAVEFlag) |
| | | #define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag) |
| | | #define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag) |
| | | #define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag) |
| | | |
| | | #include <stdint.h> |
| | | |
| | | #ifdef _WIN64 |
| | | #include <intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | |
| | | #else // Linux GCC/Clang |
| | | #include <x86intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | #include <cpuid.h> |
| | | |
| | | void asm_cpuid(uint32_t* abcd, uint32_t eax) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | register float A_PART = ALPHA*A[i*lda+k]; |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += A_PART*B[k*ldb+j]; |
| | | uint32_t ebx = 0, edx = 0, ecx = 0; |
| | | |
| | | // EBX is saved to EDI and later restored |
| | | __asm__("movl %%ebx, %%edi;" |
| | | "cpuid;" |
| | | "xchgl %%ebx, %%edi;" |
| | | : "=D"(ebx), |
| | | "+a"(eax), "+c"(ecx), "=d"(edx)); |
| | | |
| | | abcd[0] = eax; |
| | | abcd[1] = ebx; |
| | | abcd[2] = ecx; |
| | | abcd[3] = edx; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | int simd_detect_x86(unsigned int idFeature) |
| | | { |
| | | uint32_t regs[4]; // EAX, EBX, ECX, EDX; |
| | | #ifdef _WIN32 |
| | | __cpuid(regs, 0); |
| | | if (regs[0] > 1U) __cpuid(regs, 1); |
| | | #else |
| | | __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | #endif |
| | | |
| | | if ((regs[2] & idFeature) != idFeature) |
| | | return 0; |
| | | return 1; |
| | | } |
| | | |
| | | int is_fma_avx() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | result = simd_detect_x86(AVXFlag); |
| | | if (result == 1) printf(" Used AVX \n"); |
| | | else printf(" Not used AVX \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | // https://software.intel.com/sites/landingpage/IntrinsicsGuide |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | if (is_fma_avx() == 1) { // AVX |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | float A_PART = ALPHA*A[i*lda + k]; |
| | | __m256 a256, b256, c256, result256; // AVX |
| | | a256 = _mm256_set1_ps(A_PART); |
| | | for (j = 0; j < N - 8; j += 8) { |
| | | b256 = _mm256_loadu_ps(&B[k*ldb + j]); |
| | | c256 = _mm256_loadu_ps(&C[i*ldc + j]); |
| | | // FMA - Intel Haswell (2013), AMD Piledriver (2012) |
| | | //result256 = _mm256_fmadd_ps(a256, b256, c256); |
| | | result256 = _mm256_mul_ps(a256, b256); |
| | | result256 = _mm256_add_ps(result256, c256); |
| | | _mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | |
| | | int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8; |
| | | for (j = prev_end; j < N; ++j) |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | /* // SSE |
| | | __m128 a128, b128, c128, result128; // SSE |
| | | a128 = _mm_set1_ps(A_PART); |
| | | for (j = 0; j < N - 4; j += 4) { |
| | | b128 = _mm_loadu_ps(&B[k*ldb + j]); |
| | | c128 = _mm_loadu_ps(&C[i*ldc + j]); |
| | | //result128 = _mm_fmadd_ps(a128, b128, c128); |
| | | result128 = _mm_mul_ps(a128, b128); |
| | | result128 = _mm_add_ps(result128, c128); |
| | | _mm_storeu_ps(&C[i*ldc + j], result128); |
| | | } |
| | | |
| | | int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4; |
| | | for (j = prev_end; j < N; ++j){ |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | } |
| | | } |
| | | #else |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | #endif // __x86_64 |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | |
| | | float *C, int ldc) |
| | | { |
| | | //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | if (BETA != 1){ |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | } |
| | | } |
| | | } |
| | | if(!TA && !TB) |
| | | gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else if(TA && !TB) |
| | | gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else if(!TA && TB) |
| | | gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else |
| | | gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | |
| | | int t; |
| | | #pragma omp parallel for |
| | | for (t = 0; t < M; ++t) { |
| | | if (!TA && !TB) |
| | | gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (TA && !TB) |
| | | gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (!TA && TB) |
| | | gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else |
| | | gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | #include "opencl.h" |
| | | #include <math.h> |
| | | #include <clBLAS.h> |
| | | |
| | | #define STR_HELPER(x) #x |
| | | #define STR(x) STR_HELPER(x) |
| | | |
| | | #ifdef __APPLE__ |
| | | #define BLOCK 1 |
| | | #else |
| | | #define BLOCK 16 |
| | | #endif |
| | | |
| | | cl_kernel get_gemm_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_nt_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm_new.cl", "gemm_nt", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_tn_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm_new.cl", "gemm_tn", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_nn_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm_new.cl", "gemm_nn", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | void gemm_ongpu_new(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc); |
| | | void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc); |
| | | |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float *A_gpu, int lda, |
| | | float *B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | float *C_gpu, int ldc) |
| | | { |
| | | /* |
| | | cl_setup(); |
| | | cl_command_queue queue = cl.queue; |
| | | cl_event event; |
| | | cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event); |
| | | |
| | | */ |
| | | gemm_ongpu_new(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | cublasHandle_t handle = blas_handle(); |
| | | cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream()); |
| | | cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), |
| | | (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); |
| | | check_error(status); |
| | | } |
| | | |
| | | void gemm_ongpu_new(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_setup(); |
| | | cl_kernel gemm_kernel = get_gemm_kernel(); |
| | | if(!TA && !TB) gemm_kernel = get_gemm_nn_kernel(); |
| | | if(!TA && TB) gemm_kernel = get_gemm_nt_kernel(); |
| | | if(TA && !TB) gemm_kernel = get_gemm_tn_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK}; |
| | | const size_t local_size[] = {BLOCK, BLOCK}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_setup(); |
| | | cl_kernel gemm_kernel = get_gemm_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK}; |
| | | const size_t local_size[] = {BLOCK, BLOCK}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | cl_setup(); |
| | | cl_context context = cl.context; |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | size_t size = sizeof(float)*(TA ? lda*K:lda*M); |
| | | cl_mem A_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, A, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(TB ? ldb*N:ldb*K); |
| | | cl_mem B_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, B, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(ldc*M); |
| | | cl_mem C_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, |
| | | size, C, &cl.error); |
| | | check_error(cl); |
| | | float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); |
| | | float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); |
| | | float *C_gpu = cuda_make_array(C, ldc*M); |
| | | |
| | | gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | |
| | | clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0); |
| | | check_error(cl); |
| | | |
| | | clReleaseMemObject(A_gpu); |
| | | clReleaseMemObject(B_gpu); |
| | | clReleaseMemObject(C_gpu); |
| | | cuda_pull_array(C_gpu, C, ldc*M); |
| | | cuda_free(A_gpu); |
| | | cuda_free(B_gpu); |
| | | cuda_free(C_gpu); |
| | | } |
| | | |
| | | #include <stdio.h> |
| | |
| | | |
| | | void time_ongpu(int TA, int TB, int m, int k, int n) |
| | | { |
| | | int iter = 128; |
| | | int iter = 10; |
| | | float *a = random_matrix(m,k); |
| | | float *b = random_matrix(k,n); |
| | | |
| | |
| | | |
| | | float *c = random_matrix(m,n); |
| | | |
| | | cl_mem a_cl = cl_make_array(a, m*k); |
| | | cl_mem b_cl = cl_make_array(b, k*n); |
| | | cl_mem c_cl = cl_make_array(c, m*n); |
| | | float *a_cl = cuda_make_array(a, m*k); |
| | | float *b_cl = cuda_make_array(b, k*n); |
| | | float *c_cl = cuda_make_array(c, m*n); |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<iter; ++i){ |
| | | gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); |
| | | cudaThreadSynchronize(); |
| | | } |
| | | double flop = m*n*(2.*k+3.)*iter; |
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter; |
| | | double gflop = flop/pow(10., 9); |
| | | end = clock(); |
| | | double seconds = sec(end-start); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); |
| | | clReleaseMemObject(a_cl); |
| | | clReleaseMemObject(b_cl); |
| | | clReleaseMemObject(c_cl); |
| | | cuda_free(a_cl); |
| | | cuda_free(b_cl); |
| | | cuda_free(c_cl); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void test_gpu_accuracy(int TA, int TB, int m, int k, int n) |
| | | { |
| | | srand(0); |
| | |
| | | int i; |
| | | //pm(m,k,b); |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n); |
| | | //printf("GPU\n"); |
| | | //pm(m, n, c_gpu); |
| | | |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | //printf("\n\nCPU\n"); |
| | | //pm(m, n, c); |
| | | double sse = 0; |
| | | for(i = 0; i < m*n; ++i) { |
| | |
| | | free(c_gpu); |
| | | } |
| | | |
| | | void test_gpu_blas() |
| | | int test_gpu_blas() |
| | | { |
| | | /* |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | */ |
| | | test_gpu_accuracy(0,0,131,4093,1199); |
| | | test_gpu_accuracy(0,1,131,4093,1199); |
| | | test_gpu_accuracy(1,0,131,4093,1199); |
| | | test_gpu_accuracy(1,1,131,4093,1199); |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | |
| | | time_ongpu(0,0,1024,1024,1024); |
| | | time_ongpu(0,1,1024,1024,1024); |
| | | time_ongpu(1,0,1024,1024,1024); |
| | | time_ongpu(1,1,1024,1024,1024); |
| | | test_gpu_accuracy(0,0,10,10,10); |
| | | |
| | | time_ongpu(0,0,128,4096,1200); |
| | | time_ongpu(0,1,128,4096,1200); |
| | | time_ongpu(1,0,128,4096,1200); |
| | | time_ongpu(1,1,128,4096,1200); |
| | | |
| | | /* |
| | | time_gpu_random_matrix(0,0,1000,1000,100); |
| | | time_random_matrix(0,0,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(0,1,1000,1000,100); |
| | | time_random_matrix(0,1,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(1,0,1000,1000,100); |
| | | time_random_matrix(1,0,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(1,1,1000,1000,100); |
| | | time_random_matrix(1,1,1000,1000,100); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,192,729,1600); |
| | | time_ongpu(0,0,384,196,1728); |
| | | time_ongpu(0,0,256,196,3456); |
| | | time_ongpu(0,0,256,196,2304); |
| | | time_ongpu(0,0,128,4096,12544); |
| | | time_ongpu(0,0,128,4096,4096); |
| | | */ |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,576,12544); |
| | | time_ongpu(0,0,256,2304,784); |
| | | time_ongpu(1,1,2304,256,784); |
| | | time_ongpu(0,0,512,4608,196); |
| | | time_ongpu(1,1,4608,512,196); |
| | | |
| | | return 0; |
| | | } |
| | | #endif |
| | | |