AlexeyAB
2017-01-15 e83d8e56d56978e5c2e571b8b4bf05b90a851ce0
README.md
@@ -1,4 +1,6 @@
![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
# Yolo-Windows v2
# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
@@ -74,7 +76,16 @@
### How to compile:
1. If you have CUDA 8.0, OpenCV 2.4.9 (C:\opencv_2.4.9) and MSVS 2015 then start MSVS, open `build\darknet\darknet.sln` and do the: Build -> Build darknet
1. If you have MSVS 2015, CUDA 8.0 and OpenCV 2.4.9 (with paths: `C:\opencv_2.4.9\opencv\build\include` & `C:\opencv_2.4.9\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
  1.1 If you want to build with CUDNN to speed up, then:
    * download and install CUDNN: https://developer.nvidia.com/cudnn
    * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
    * open `\darknet.sln` -> (right click on project) -> properties  -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
@@ -83,6 +94,13 @@
  3.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories
  
  3.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories
  3.3 Open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... :
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")`
4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
@@ -94,9 +112,9 @@
- (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
`C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
- right click on project -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- add to project all .c & .cu files from `\src`
-  (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here:
- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here:
`C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
-  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
@@ -104,6 +122,12 @@
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
- open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... :
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")`
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
@@ -196,3 +220,19 @@
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
 * Also you can get result earlier than all 45000 iterations, for example, usually sufficient 2000 iterations for each class(object). I.e. for 6 classes to avoid overfitting - you can stop training after 12000 iterations and use `yolo-obj_12000.weights` to detection.
### Custom object detection:
Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_3000.weights`
| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
|---|---|
## How to mark bounded boxes of objects and create annotation files:
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2