AlexeyAB
2017-09-14 e8dd9dd877a3cf370ed78a9b3a78935e9f994f28
README.md
@@ -1,38 +1,50 @@
# Yolo-Windows v2
# Yolo-v2 Windows and Linux version
1. [How to use](#how-to-use)
2. [How to compile](#how-to-compile)
3. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
4. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
5. [When should I stop training](#when-should-i-stop-training)
6. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
2. [How to compile on Linux](#how-to-compile-on-linux)
3. [How to compile on Windows](#how-to-compile-on-windows)
4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
5. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
6. [When should I stop training](#when-should-i-stop-training)
7. [How to improve object detection](#how-to-improve-object-detection)
8. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
9. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
A yolo windows version (for object detection)
Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
This repository is forked from Linux-version: https://github.com/pjreddie/darknet
More details: http://pjreddie.com/darknet/yolo/
This repository supports:
* both Windows and Linux
* both OpenCV 3.x and OpenCV 2.4.13
* both cuDNN 5 and cuDNN 6
* CUDA >= 7.5
* also create SO-library on Linux and DLL-library on Windows
##### Requires: 
* **MS Visual Studio 2015 (v140)**: https://www.microsoft.com/download/details.aspx?id=48146
* **CUDA 8.0 for Windows x64**: https://developer.nvidia.com/cuda-downloads
* **OpenCV 2.4.9**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
  - To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
  - To compile with different OpenCV version - change in file yolo.c each string look like **#pragma comment(lib, "opencv_core249.lib")** from 249 to required version.
  - With OpenCV will show image or video detection in window and store result to: test_dnn_out.avi
* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
* **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
  - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
* `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
* `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
* `yolo.cfg` (194 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
* `yolo-voc.cfg` (194 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
* `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
* `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
Put it near compiled: darknet.exe
@@ -48,22 +60,32 @@
##### Example of usage in cmd-files from `build\darknet\x64\`:
* `darknet_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
* `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
* `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
* `darknet_web_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
* `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
* `darknet_demo_store.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: res.avi
* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone)
* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0
* `darknet_coco_9000.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the image: dog.jpg
* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4, and store result to: res.avi
##### How to use on the command line:
* 256 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
* Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
* 256 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
* 256 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
* 256 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolo.cfg ./yolo.weights`
* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi`
* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
* 256 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 256 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 256 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
##### For using network video-camera mjpeg-stream with any Android smartphone:
@@ -78,36 +100,42 @@
4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
* 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
### How to compile on Linux:
Just do `make` in the darknet directory.
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/use/local/cuda`)
* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
* `DEBUG=1` to bould debug version of Yolo
* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
### How to compile:
### How to compile on Windows:
1. If you have MSVS 2015, CUDA 8.0 and OpenCV 2.4.9 (with paths: `C:\opencv_2.4.9\opencv\build\include` & `C:\opencv_2.4.9\opencv\build\x64\vc12\lib` or `vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
1. If you have **MSVS 2015, CUDA 8.0 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
  1.1. Find files `opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` in `C:\opencv_2.4.9\opencv\build\x64\vc12\bin` or `vc14\bin` and put it near with `darknet.exe`
    1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
2. If you have other version of **CUDA (not 8.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
3. If you have other version of OpenCV 2.4.x (not 2.4.9) then you should change pathes after `\darknet.sln` is opened
3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
  3.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories
4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
    4.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
  
  3.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories
    4.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
  
  3.3 Open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... :
5. If you have other version of OpenCV 2.4.x (not 3.x) then you also should change lines like `#pragma comment(lib, "opencv_core2413.lib")` in the file `\src\detector.c`
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")`
4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
5. If you want to build with CUDNN to speed up then:
6. If you want to build with CUDNN to speed up then:
      
    * download and install CUDNN: https://developer.nvidia.com/cudnn
    * download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
      
    * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
      
@@ -115,35 +143,34 @@
### How to compile (custom):
Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 2.4.9
Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 3.0
Then add to your created project:
- (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
`C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- add to project all .c & .cu files from `\src`
- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
`C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
-  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
- open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... :
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")`
- open file: `\src\detector.c` and check lines `#pragma` and `#inclue` for OpenCV.
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
`pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
    * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
`cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
    * `cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
    * For OpenCV 3.0: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin`
    * For OpenCV 2.4.13: `opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` from  `C:\opencv_2.4.9\opencv\build\x64\vc14\bin`
## How to train (Pascal VOC Data):
@@ -162,7 +189,9 @@
5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
6. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
If required change pathes in the file `build\darknet\x64\data\voc.data`
@@ -170,20 +199,22 @@
## How to train with multi-GPU:
1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
## How to train (to detect your custom objects):
1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.cfg` (or copy `yolo-voc.cfg` to `yolo-obj.cfg)` and:
1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and:
  * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
  * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
  * change line `classes=20` to your number of objects
  * change line #224 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.cfg` in such lines:
  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
  ```
  [convolutional]
@@ -199,9 +230,9 @@
  ```
  classes= 2
  train  = train.txt
  valid  = test.txt
  names = obj.names
  train  = data/train.txt
  valid  = data/test.txt
  names = data/obj.names
  backup = backup/
  ```
@@ -235,6 +266,8 @@
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations until 1000 iterations has been reached, and after for each 1000 iterations)
9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
 * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
@@ -256,7 +289,7 @@
  * **9002** - iteration number (number of batch)
  * **0.060730 avg** - average loss (error) - **the lower, the better**
  When you see that average loss **0.060730 avg** enough low at many iterations and no longer decreases then you should stop training.
  When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training.
2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
@@ -264,7 +297,11 @@
![Overfitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png) 
 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
To get weights from Early Stopping Point:
  2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
  2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
* `darknet.exe detector recall data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
* `darknet.exe detector recall data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
@@ -275,9 +312,9 @@
> 7586 7612 7689 RPs/Img: 68.23 **IOU: 77.86%** Recall:99.00%
* **IOU** - the bigger, the better (says about accuracy) - **better to use**
* **Recall** - the bigger, the better (says about accuracy)
* **Recall** - the bigger, the better (says about accuracy) - actually Yolo calculates true positives, so it shouldn't be used
For example, **bigger IUO** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
@@ -289,8 +326,55 @@
| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
|---|---|
## How to improve object detection:
1. Before training:
  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link]https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L244)
  * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
2. After training - for detection:
  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4)
    * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
    * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L3)
## How to mark bounded boxes of objects and create annotation files:
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2
## How to use Yolo as DLL
1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
    * You should have installed **CUDA 8.0**
    * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
2. To use Yolo as DLL-file in your C++ console application - open in MSVS2015 file `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
    * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
    * or you can run from MSVS2015 (before this - you should copy 2 files `yolo-voc.cfg` and `yolo-voc.weights` to the directory `build\darknet\` )
    * after launching your console application and entering the image file name - you will see info for each object:
    `<obj_id> <left_x> <top_y> <width> <height> <probability>`
    * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
    * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
```
class Detector {
public:
   Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
   ~Detector();
   std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
   std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
   static image_t load_image(std::string image_filename);
   static void free_image(image_t m);
#ifdef OPENCV
   std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
#endif
};
```