AlexeyAB
2018-03-16 e947bf29af0540eda50fd298bb5492c2d8fa7680
src/connected_layer.c
@@ -36,6 +36,10 @@
    l.weights = calloc(outputs*inputs, sizeof(float));
    l.biases = calloc(outputs, sizeof(float));
    l.forward = forward_connected_layer;
    l.backward = backward_connected_layer;
    l.update = update_connected_layer;
    //float scale = 1./sqrt(inputs);
    float scale = sqrt(2./inputs);
    for(i = 0; i < outputs*inputs; ++i){
@@ -66,6 +70,10 @@
    }
#ifdef GPU
    l.forward_gpu = forward_connected_layer_gpu;
    l.backward_gpu = backward_connected_layer_gpu;
    l.update_gpu = update_connected_layer_gpu;
    l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
    l.biases_gpu = cuda_make_array(l.biases, outputs);
@@ -92,7 +100,7 @@
    }
#endif
    l.activation = activation;
    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
    fprintf(stderr, "connected                            %4d  ->  %4d\n", inputs, outputs);
    return l;
}
@@ -187,7 +195,7 @@
{
    int i, j;
    for(i = 0; i < l.outputs; ++i){
        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
        for(j = 0; j < l.inputs; ++j){
            l.weights[i*l.inputs + j] *= scale;
        }
@@ -198,6 +206,25 @@
    }
}
void statistics_connected_layer(layer l)
{
    if(l.batch_normalize){
        printf("Scales ");
        print_statistics(l.scales, l.outputs);
        /*
        printf("Rolling Mean ");
        print_statistics(l.rolling_mean, l.outputs);
        printf("Rolling Variance ");
        print_statistics(l.rolling_variance, l.outputs);
        */
    }
    printf("Biases ");
    print_statistics(l.biases, l.outputs);
    printf("Weights ");
    print_statistics(l.weights, l.outputs);
}
#ifdef GPU
void pull_connected_layer(connected_layer l)