| | |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | #include "blas.h" |
| | | #include "parser.h" |
| | | #include "assert.h" |
| | | #include "activations.h" |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "gru_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "reorg_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "activations.h" |
| | | #include "assert.h" |
| | | #include "avgpool_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "blas.h" |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "crop_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "gru_layer.h" |
| | | #include "list.h" |
| | | #include "local_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "option_list.h" |
| | | #include "parser.h" |
| | | #include "region_layer.h" |
| | | #include "reorg_layer.h" |
| | | #include "reorg_old_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "softmax_layer.h" |
| | | #include "utils.h" |
| | | #include <stdint.h> |
| | | |
| | | typedef struct{ |
| | | char *type; |
| | |
| | | if (strcmp(type, "[max]")==0 |
| | | || strcmp(type, "[maxpool]")==0) return MAXPOOL; |
| | | if (strcmp(type, "[reorg]")==0) return REORG; |
| | | if (strcmp(type, "[reorg_old]") == 0) return REORG_OLD; |
| | | if (strcmp(type, "[avg]")==0 |
| | | || strcmp(type, "[avgpool]")==0) return AVGPOOL; |
| | | if (strcmp(type, "[dropout]")==0) return DROPOUT; |
| | |
| | | int coords = option_find_int(options, "coords", 4); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int num = option_find_int(options, "num", 1); |
| | | int max_boxes = option_find_int_quiet(options, "max", 30); |
| | | |
| | | params.w = option_find_int(options, "side", params.w); |
| | | params.h = option_find_int(options, "side", params.h); |
| | | |
| | | layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); |
| | | layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords, max_boxes); |
| | | assert(l.outputs == params.inputs); |
| | | |
| | | l.log = option_find_int_quiet(options, "log", 0); |
| | | l.sqrt = option_find_int_quiet(options, "sqrt", 0); |
| | | |
| | | l.small_object = option_find_int_quiet(options, "small_object", 0); |
| | | l.softmax = option_find_int(options, "softmax", 0); |
| | | l.max_boxes = option_find_int_quiet(options, "max",30); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | //l.max_boxes = option_find_int_quiet(options, "max",30); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.rescore = option_find_int_quiet(options, "rescore",0); |
| | | |
| | | l.thresh = option_find_float(options, "thresh", .5); |
| | | l.classfix = option_find_int_quiet(options, "classfix", 0); |
| | | l.absolute = option_find_int_quiet(options, "absolute", 0); |
| | | l.random = option_find_int_quiet(options, "random", 0); |
| | | |
| | | l.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | l.object_scale = option_find_float(options, "object_scale", 1); |
| | | l.noobject_scale = option_find_float(options, "noobject_scale", 1); |
| | | l.class_scale = option_find_float(options, "class_scale", 1); |
| | | l.bias_match = option_find_int_quiet(options, "bias_match",0); |
| | | |
| | | char *tree_file = option_find_str(options, "tree", 0); |
| | | if (tree_file) l.softmax_tree = read_tree(tree_file); |
| | | char *map_file = option_find_str(options, "map", 0); |
| | | if (map_file) l.map = read_map(map_file); |
| | | |
| | | char *a = option_find_str(options, "anchors", 0); |
| | | if(a){ |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | for(i = 0; i < n; ++i){ |
| | | float bias = atof(a); |
| | | l.biases[i] = bias; |
| | | a = strchr(a, ',')+1; |
| | | } |
| | | } |
| | | return l; |
| | | } |
| | | detection_layer parse_detection(list *options, size_params params) |
| | |
| | | layer parse_reorg(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | | int reverse = option_find_int_quiet(options, "reverse",0); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before reorg layer must output image."); |
| | | |
| | | layer layer = make_reorg_layer(batch,w,h,c,stride); |
| | | layer layer = make_reorg_layer(batch,w,h,c,stride,reverse); |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_reorg_old(list *options, size_params params) |
| | | { |
| | | printf("\n reorg_old \n"); |
| | | int stride = option_find_int(options, "stride", 1); |
| | | int reverse = option_find_int_quiet(options, "reverse", 0); |
| | | |
| | | int batch, h, w, c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch = params.batch; |
| | | if (!(h && w && c)) error("Layer before reorg layer must output image."); |
| | | |
| | | layer layer = make_reorg_old_layer(batch, w, h, c, stride, reverse); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer parse_maxpool(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | |
| | | net->saturation = option_find_float_quiet(options, "saturation", 1); |
| | | net->exposure = option_find_float_quiet(options, "exposure", 1); |
| | | net->hue = option_find_float_quiet(options, "hue", 0); |
| | | net->power = option_find_float_quiet(options, "power", 4); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->step = option_find_int(options, "step", 1); |
| | | } else if (net->policy == POLY || net->policy == RANDOM){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | //net->power = option_find_float(options, "power", 1); |
| | | } |
| | | net->max_batches = option_find_int(options, "max_batches", 0); |
| | | } |
| | |
| | | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | return parse_network_cfg_custom(filename, 0); |
| | | } |
| | | |
| | | network parse_network_cfg_custom(char *filename, int batch) |
| | | { |
| | | list *sections = read_cfg(filename); |
| | | node *n = sections->front; |
| | | if(!n) error("Config file has no sections"); |
| | |
| | | params.w = net.w; |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | if (batch > 0) net.batch = batch; |
| | | params.batch = net.batch; |
| | | params.time_steps = net.time_steps; |
| | | params.net = net; |
| | |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | | fprintf(stderr, "layer filters size input output\n"); |
| | | while(n){ |
| | | params.index = count; |
| | | fprintf(stderr, "%d: ", count); |
| | | fprintf(stderr, "%5d ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | layer l = {0}; |
| | |
| | | }else if(lt == MAXPOOL){ |
| | | l = parse_maxpool(options, params); |
| | | }else if(lt == REORG){ |
| | | l = parse_reorg(options, params); |
| | | l = parse_reorg(options, params); } |
| | | else if (lt == REORG_OLD) { |
| | | l = parse_reorg_old(options, params); |
| | | }else if(lt == AVGPOOL){ |
| | | l = parse_avgpool(options, params); |
| | | }else if(lt == ROUTE){ |
| | |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | | l.onlyforward = option_find_int_quiet(options, "onlyforward", 0); |
| | | l.stopbackward = option_find_int_quiet(options, "stopbackward", 0); |
| | | l.dontload = option_find_int_quiet(options, "dontload", 0); |
| | | l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); |
| | | option_unused(options); |
| | |
| | | return net; |
| | | } |
| | | |
| | | |
| | | |
| | | list *read_cfg(char *filename) |
| | | { |
| | | FILE *file = fopen(filename, "r"); |
| | |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.weights, sizeof(float), num, fp); |
| | | if(l.adam){ |
| | | fwrite(l.m, sizeof(float), num, fp); |
| | | fwrite(l.v, sizeof(float), num, fp); |
| | | } |
| | | } |
| | | |
| | | void save_batchnorm_weights(layer l, FILE *fp) |
| | |
| | | } |
| | | #endif |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | FILE *fp = fopen(filename, "wb"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | int major = 0; |
| | |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | if(0){ |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | printf("%g, ", l.rolling_mean[i]); |
| | | } |
| | | printf("\n"); |
| | | for(i = 0; i < l.n; ++i){ |
| | | printf("%g, ", l.rolling_variance[i]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | if(0){ |
| | | fill_cpu(l.n, 0, l.rolling_mean, 1); |
| | | fill_cpu(l.n, 0, l.rolling_variance, 1); |
| | | } |
| | | } |
| | | fread(l.weights, sizeof(float), num, fp); |
| | | if(l.adam){ |
| | | fread(l.m, sizeof(float), num, fp); |
| | | fread(l.v, sizeof(float), num, fp); |
| | | } |
| | | //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.weights, l.c*l.size*l.size, l.n); |
| | |
| | | fread(&major, sizeof(int), 1, fp); |
| | | fread(&minor, sizeof(int), 1, fp); |
| | | fread(&revision, sizeof(int), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | if ((major * 10 + minor) >= 2) { |
| | | printf("\n seen 64 \n"); |
| | | uint64_t iseen = 0; |
| | | fread(&iseen, sizeof(uint64_t), 1, fp); |
| | | *net->seen = iseen; |
| | | } |
| | | else { |
| | | printf("\n seen 32 \n"); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | } |
| | | int transpose = (major > 1000) || (minor > 1000); |
| | | |
| | | int i; |