Joseph Redmon
2016-06-02 ec3d050a76ee8c41f35c4531d3fa07a2d9c28ed3
src/convolutional_layer.c
@@ -1,231 +1,565 @@
#include "convolutional_layer.h"
#include "utils.h"
#include "batchnorm_layer.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include <stdio.h>
#include <time.h>
image get_convolutional_image(convolutional_layer layer)
void swap_binary(convolutional_layer *l)
{
    int h,w,c;
    if(layer.edge){
        h = (layer.h-1)/layer.stride + 1;
        w = (layer.w-1)/layer.stride + 1;
    }else{
        h = (layer.h - layer.size)/layer.stride+1;
        w = (layer.h - layer.size)/layer.stride+1;
    }
    c = layer.n;
    return double_to_image(h,w,c,layer.output);
    float *swap = l->filters;
    l->filters = l->binary_filters;
    l->binary_filters = swap;
    #ifdef GPU
    swap = l->filters_gpu;
    l->filters_gpu = l->binary_filters_gpu;
    l->binary_filters_gpu = swap;
    #endif
}
image get_convolutional_delta(convolutional_layer layer)
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
{
    int h,w,c;
    if(layer.edge){
        h = (layer.h-1)/layer.stride + 1;
        w = (layer.w-1)/layer.stride + 1;
    }else{
        h = (layer.h - layer.size)/layer.stride+1;
        w = (layer.h - layer.size)/layer.stride+1;
    }
    c = layer.n;
    return double_to_image(h,w,c,layer.delta);
}
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{
    int i;
    int out_h,out_w;
    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->n = n;
    layer->edge = 0;
    layer->stride = stride;
    layer->kernels = calloc(n, sizeof(image));
    layer->kernel_updates = calloc(n, sizeof(image));
    layer->kernel_momentum = calloc(n, sizeof(image));
    layer->biases = calloc(n, sizeof(double));
    layer->bias_updates = calloc(n, sizeof(double));
    layer->bias_momentum = calloc(n, sizeof(double));
    double scale = 20./(size*size*c);
    for(i = 0; i < n; ++i){
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = 1;
        layer->kernels[i] = make_random_kernel(size, c, scale);
        layer->kernel_updates[i] = make_random_kernel(size, c, 0);
        layer->kernel_momentum[i] = make_random_kernel(size, c, 0);
    }
    layer->size = 2*(size/2)+1;
    if(layer->edge){
        out_h = (layer->h-1)/layer->stride + 1;
        out_w = (layer->w-1)/layer->stride + 1;
    }else{
        out_h = (layer->h - layer->size)/layer->stride+1;
        out_w = (layer->h - layer->size)/layer->stride+1;
    }
    printf("Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    layer->output = calloc(out_h * out_w * n, sizeof(double));
    layer->delta  = calloc(out_h * out_w * n, sizeof(double));
    layer->upsampled = make_image(h,w,n);
    layer->activation = activation;
    return layer;
}
void forward_convolutional_layer(const convolutional_layer layer, double *in)
{
    image input = double_to_image(layer.h, layer.w, layer.c, in);
    image output = get_convolutional_image(layer);
    int i,j;
    for(i = 0; i < layer.n; ++i){
        convolve(input, layer.kernels[i], layer.stride, i, output, layer.edge);
    }
    for(i = 0; i < output.c; ++i){
        for(j = 0; j < output.h*output.w; ++j){
            int index = i*output.h*output.w + j;
            output.data[index] += layer.biases[i];
            output.data[index] = activate(output.data[index], layer.activation);
    int i, k, f;
    for(f = 0; f < n; ++f){
        float mean = 0;
        for(i = 0; i < size; ++i){
            mean += fabs(filters[f*size + i]);
        }
    }
}
void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta)
{
    int i;
    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
    image out_delta = get_convolutional_delta(layer);
    zero_image(in_delta);
    for(i = 0; i < layer.n; ++i){
        back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta, layer.edge);
    }
}
void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta)
{
    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
    image out_delta = get_convolutional_delta(layer);
    int i,j;
    for(i = 0; i < layer.n; ++i){
        rotate_image(layer.kernels[i]);
    }
    zero_image(in_delta);
    upsample_image(out_delta, layer.stride, layer.upsampled);
    for(j = 0; j < in_delta.c; ++j){
        for(i = 0; i < layer.n; ++i){
            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
        }
    }
    for(i = 0; i < layer.n; ++i){
        rotate_image(layer.kernels[i]);
    }
}
void learn_convolutional_layer(convolutional_layer layer, double *input)
{
    int i;
    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
    image out_delta = get_convolutional_delta(layer);
    image out_image = get_convolutional_image(layer);
    for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){
        out_delta.data[i] *= gradient(out_image.data[i], layer.activation);
    }
    for(i = 0; i < layer.n; ++i){
        kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
        layer.bias_updates[i] += avg_image_layer(out_delta, i);
        //printf("%30.20lf\n", layer.bias_updates[i]);
    }
}
void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
{
    //step = .01;
    int i,j;
    for(i = 0; i < layer.n; ++i){
        layer.bias_momentum[i] = step*(layer.bias_updates[i])
                                + momentum*layer.bias_momentum[i];
        layer.biases[i] += layer.bias_momentum[i];
        //layer.biases[i] = constrain(layer.biases[i],1.);
        layer.bias_updates[i] = 0;
        int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
        for(j = 0; j < pixels; ++j){
            layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j])
                                                + momentum*layer.kernel_momentum[i].data[j];
            layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
            //layer.kernels[i].data[j] = constrain(layer.kernels[i].data[j], 1.);
        }
        zero_image(layer.kernel_updates[i]);
    }
}
void visualize_convolutional_filters(convolutional_layer layer, char *window)
{
    int color = 1;
    int border = 1;
    int h,w,c;
    int size = layer.size;
    h = size;
    w = (size + border) * layer.n - border;
    c = layer.kernels[0].c;
    if(c != 3 || !color){
        h = (h+border)*c - border;
        c = 1;
    }
    image filters = make_image(h,w,c);
    int i,j;
    for(i = 0; i < layer.n; ++i){
        int w_offset = i*(size+border);
        image k = layer.kernels[i];
        image copy = copy_image(k);
        /*
        printf("Kernel %d - Bias: %f, Channels:",i,layer.biases[i]);
        for(j = 0; j < k.c; ++j){
            double a = avg_image_layer(k, j);
            printf("%f, ", a);
        }
        printf("\n");
        */
        normalize_image(copy);
        for(j = 0; j < k.c; ++j){
            set_pixel(copy,0,0,j,layer.biases[i]);
        }
        if(c == 3 && color){
            embed_image(copy, filters, 0, w_offset);
        }
        else{
            for(j = 0; j < k.c; ++j){
                int h_offset = j*(size+border);
                image layer = get_image_layer(k, j);
                embed_image(layer, filters, h_offset, w_offset);
                free_image(layer);
        mean = mean / size;
        scales[f] = mean;
        for(i = 0; i < size/8; ++i){
            binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
            for(k = 0; k < 8; ++k){
            }
        }
        free_image(copy);
    }
    image delta = get_convolutional_delta(layer);
    image dc = collapse_image_layers(delta, 1);
    char buff[256];
    sprintf(buff, "%s: Delta", window);
    show_image(dc, buff);
    free_image(dc);
    show_image(filters, window);
    free_image(filters);
}
void visualize_convolutional_layer(convolutional_layer layer)
void binarize_filters(float *filters, int n, int size, float *binary)
{
    int i, f;
    for(f = 0; f < n; ++f){
        float mean = 0;
        for(i = 0; i < size; ++i){
            mean += fabs(filters[f*size + i]);
        }
        mean = mean / size;
        for(i = 0; i < size; ++i){
            binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
        }
    }
}
int convolutional_out_height(convolutional_layer l)
{
    int h = l.h;
    if (!l.pad) h -= l.size;
    else h -= 1;
    return h/l.stride + 1;
}
int convolutional_out_width(convolutional_layer l)
{
    int w = l.w;
    if (!l.pad) w -= l.size;
    else w -= 1;
    return w/l.stride + 1;
}
image get_convolutional_image(convolutional_layer l)
{
    int h,w,c;
    h = convolutional_out_height(l);
    w = convolutional_out_width(l);
    c = l.n;
    return float_to_image(w,h,c,l.output);
}
image get_convolutional_delta(convolutional_layer l)
{
    int h,w,c;
    h = convolutional_out_height(l);
    w = convolutional_out_width(l);
    c = l.n;
    return float_to_image(w,h,c,l.delta);
}
size_t get_workspace_size(layer l){
    #ifdef CUDNN
    size_t most = 0;
    size_t s = 0;
    cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            l.fw_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            l.bf_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            l.bd_algo,
            &s);
    if (s > most) most = s;
    return most;
    #else
    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
    #endif
}
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
    int i;
    char buff[256];
    //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3);
    for(i = 0; i < layer.n; ++i){
        image k = layer.kernels[i];
        sprintf(buff, "Kernel %d", i);
        if(k.c <= 3) show_image(k, buff);
        else show_image_layers(k, buff);
    convolutional_layer l = {0};
    l.type = CONVOLUTIONAL;
    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = pad;
    l.batch_normalize = batch_normalize;
    l.filters = calloc(c*n*size*size, sizeof(float));
    l.filter_updates = calloc(c*n*size*size, sizeof(float));
    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));
    // float scale = 1./sqrt(size*size*c);
    float scale = sqrt(2./(size*size*c));
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;
    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
    if(binary){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.cfilters = calloc(c*n*size*size, sizeof(char));
        l.scales = calloc(n, sizeof(float));
    }
    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            l.scales[i] = 1;
        }
        l.mean = calloc(n, sizeof(float));
        l.variance = calloc(n, sizeof(float));
        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
    }
#ifdef GPU
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    l.scales_gpu = cuda_make_array(l.scales, n);
    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    if(binary){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    }
    if(xnor){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
    }
    l.xnor = xnor;
    if(batch_normalize){
        l.mean_gpu = cuda_make_array(l.mean, n);
        l.variance_gpu = cuda_make_array(l.variance, n);
        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
        l.mean_delta_gpu = cuda_make_array(l.mean, n);
        l.variance_delta_gpu = cuda_make_array(l.variance, n);
        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    }
#ifdef CUDNN
    cudnnCreateTensorDescriptor(&l.srcTensorDesc);
    cudnnCreateTensorDescriptor(&l.dstTensorDesc);
    cudnnCreateFilterDescriptor(&l.filterDesc);
    cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
    cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
    cudnnCreateFilterDescriptor(&l.dfilterDesc);
    cudnnCreateConvolutionDescriptor(&l.convDesc);
    cudnnSetTensor4dDescriptor(l.dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w);
    cudnnSetTensor4dDescriptor(l.ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
    cudnnSetFilter4dDescriptor(l.dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size);
    cudnnSetTensor4dDescriptor(l.srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w);
    cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
    cudnnSetFilter4dDescriptor(l.filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size);
    int padding = l.pad ? l.size/2 : 0;
    cudnnSetConvolution2dDescriptor(l.convDesc, padding, padding, l.stride, l.stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l.fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l.bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l.bf_algo);
#endif
#endif
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;
    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    return l;
}
void denormalize_convolutional_layer(convolutional_layer l)
{
    int i, j;
    for(i = 0; i < l.n; ++i){
        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
        for(j = 0; j < l.c*l.size*l.size; ++j){
            l.filters[i*l.c*l.size*l.size + j] *= scale;
        }
        l.biases[i] -= l.rolling_mean[i] * scale;
    }
}
void test_convolutional_layer()
{
    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
    l.batch_normalize = 1;
    float data[] = {1,1,1,1,1,
        1,1,1,1,1,
        1,1,1,1,1,
        1,1,1,1,1,
        1,1,1,1,1,
        2,2,2,2,2,
        2,2,2,2,2,
        2,2,2,2,2,
        2,2,2,2,2,
        2,2,2,2,2,
        3,3,3,3,3,
        3,3,3,3,3,
        3,3,3,3,3,
        3,3,3,3,3,
        3,3,3,3,3};
    network_state state = {0};
    state.input = data;
    forward_convolutional_layer(l, state);
}
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
    l->w = w;
    l->h = h;
    int out_w = convolutional_out_width(*l);
    int out_h = convolutional_out_height(*l);
    l->out_w = out_w;
    l->out_h = out_h;
    l->outputs = l->out_h * l->out_w * l->out_c;
    l->inputs = l->w * l->h * l->c;
    l->output = realloc(l->output,
            l->batch*out_h * out_w * l->n*sizeof(float));
    l->delta  = realloc(l->delta,
            l->batch*out_h * out_w * l->n*sizeof(float));
#ifdef GPU
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);
    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
    #ifdef CUDNN
    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
    cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
    cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
    int padding = l->pad ? l->size/2 : 0;
    cudnnSetConvolution2dDescriptor(l->convDesc, padding, padding, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->filterDesc,
            l->convDesc,
            l->dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l->fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l->filterDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l->bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dfilterDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l->bf_algo);
    #endif
#endif
    l->workspace_size = get_workspace_size(*l);
}
void add_bias(float *output, float *biases, int batch, int n, int size)
{
    int i,j,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            for(j = 0; j < size; ++j){
                output[(b*n + i)*size + j] += biases[i];
            }
        }
    }
}
void scale_bias(float *output, float *scales, int batch, int n, int size)
{
    int i,j,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            for(j = 0; j < size; ++j){
                output[(b*n + i)*size + j] *= scales[i];
            }
        }
    }
}
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
{
    int i,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
        }
    }
}
void forward_convolutional_layer(convolutional_layer l, network_state state)
{
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    int i;
    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
    /*
       if(l.binary){
       binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
       binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
       swap_binary(&l);
       }
     */
    if(l.binary){
        int m = l.n;
        int k = l.size*l.size*l.c;
        int n = out_h*out_w;
        char  *a = l.cfilters;
        float *b = state.workspace;
        float *c = l.output;
        for(i = 0; i < l.batch; ++i){
            im2col_cpu(state.input, l.c, l.h, l.w,
                    l.size, l.stride, l.pad, b);
            gemm_bin(m,n,k,1,a,k,b,n,c,n);
            c += n*m;
            state.input += l.c*l.h*l.w;
        }
        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
        add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
        activate_array(l.output, m*n*l.batch, l.activation);
        return;
    }
    int m = l.n;
    int k = l.size*l.size*l.c;
    int n = out_h*out_w;
    float *a = l.filters;
    float *b = state.workspace;
    float *c = l.output;
    for(i = 0; i < l.batch; ++i){
        im2col_cpu(state.input, l.c, l.h, l.w,
                l.size, l.stride, l.pad, b);
        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        c += n*m;
        state.input += l.c*l.h*l.w;
    }
    if(l.batch_normalize){
        forward_batchnorm_layer(l, state);
    }
    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
    activate_array(l.output, m*n*l.batch, l.activation);
}
void backward_convolutional_layer(convolutional_layer l, network_state state)
{
    int i;
    int m = l.n;
    int n = l.size*l.size*l.c;
    int k = convolutional_out_height(l)*
        convolutional_out_width(l);
    gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
    backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
    for(i = 0; i < l.batch; ++i){
        float *a = l.delta + i*m*k;
        float *b = state.workspace;
        float *c = l.filter_updates;
        float *im = state.input+i*l.c*l.h*l.w;
        im2col_cpu(im, l.c, l.h, l.w,
                l.size, l.stride, l.pad, b);
        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
        if(state.delta){
            a = l.filters;
            b = l.delta + i*m*k;
            c = state.workspace;
            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
            col2im_cpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
        }
    }
}
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
{
    int size = l.size*l.size*l.c*l.n;
    axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
    scal_cpu(l.n, momentum, l.bias_updates, 1);
    axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
    axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
    scal_cpu(size, momentum, l.filter_updates, 1);
}
image get_convolutional_filter(convolutional_layer l, int i)
{
    int h = l.size;
    int w = l.size;
    int c = l.c;
    return float_to_image(w,h,c,l.filters+i*h*w*c);
}
void rgbgr_filters(convolutional_layer l)
{
    int i;
    for(i = 0; i < l.n; ++i){
        image im = get_convolutional_filter(l, i);
        if (im.c == 3) {
            rgbgr_image(im);
        }
    }
}
void rescale_filters(convolutional_layer l, float scale, float trans)
{
    int i;
    for(i = 0; i < l.n; ++i){
        image im = get_convolutional_filter(l, i);
        if (im.c == 3) {
            scale_image(im, scale);
            float sum = sum_array(im.data, im.w*im.h*im.c);
            l.biases[i] += sum*trans;
        }
    }
}
image *get_filters(convolutional_layer l)
{
    image *filters = calloc(l.n, sizeof(image));
    int i;
    for(i = 0; i < l.n; ++i){
        filters[i] = copy_image(get_convolutional_filter(l, i));
        //normalize_image(filters[i]);
    }
    return filters;
}
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
{
    image *single_filters = get_filters(l);
    show_images(single_filters, l.n, window);
    image delta = get_convolutional_image(l);
    image dc = collapse_image_layers(delta, 1);
    char buff[256];
    sprintf(buff, "%s: Output", window);
    //show_image(dc, buff);
    //save_image(dc, buff);
    free_image(dc);
    return single_filters;
}