| | |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "cuda.h" |
| | | #include <float.h> |
| | | #include <math.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <assert.h> |
| | | |
| | | softmax_layer *make_softmax_layer(int inputs) |
| | | softmax_layer *make_softmax_layer(int batch, int groups, int inputs) |
| | | { |
| | | assert(inputs%groups == 0); |
| | | fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); |
| | | softmax_layer *layer = calloc(1, sizeof(softmax_layer)); |
| | | layer->batch = batch; |
| | | layer->groups = groups; |
| | | layer->inputs = inputs; |
| | | layer->output = calloc(inputs, sizeof(float)); |
| | | layer->delta = calloc(inputs, sizeof(float)); |
| | | layer->output = calloc(inputs*batch, sizeof(float)); |
| | | layer->delta = calloc(inputs*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(layer->output, inputs*batch); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | /* UNSTABLE! |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | void softmax_array(float *input, int n, float *output) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]); |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i])/sum; |
| | | } |
| | | } |
| | | */ |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | float largest = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < n; ++i){ |
| | | if(input[i] > largest) largest = input[i]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | for(i = 0; i < n; ++i){ |
| | | sum += exp(input[i]-largest); |
| | | } |
| | | sum = largest+log(sum); |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i]-sum); |
| | | if(sum) sum = largest+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < n; ++i){ |
| | | output[i] = exp(input[i]-sum); |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta) |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int b; |
| | | int inputs = layer.inputs / layer.groups; |
| | | int batch = layer.batch * layer.groups; |
| | | for(b = 0; b < batch; ++b){ |
| | | softmax_array(input+b*inputs, inputs, layer.output+b*inputs); |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, float *delta) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | for(i = 0; i < layer.inputs*layer.batch; ++i){ |
| | | delta[i] = layer.delta[i]; |
| | | } |
| | | } |