| | |
| | | from urllib import request |
| | | import ast |
| | | import json |
| | | import os |
| | | import pandas as pd |
| | | import re |
| | | import os |
| | | from urllib import request, error |
| | | |
| | | from config import Config |
| | | |
| | | """ |
| | | Note: All codes in this file realies on Scryfall API to aggregate card database and their images. |
| | | Scryfall API doc is available at: https://scryfall.com/docs/api |
| | | """ |
| | | |
| | | |
| | | def fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+format:modern+lang:en+frame:2003', |
| | | csv_name=''): |
| | | csv_name=None): |
| | | """ |
| | | Given the query URL using Scryfall API, aggregate all card information and convert them from json to table |
| | | :param url: query URL |
| | | :param csv_name: path of the csv file to save the result |
| | | :return: pandas dataframe of the fetch cards |
| | | """ |
| | | has_more = True |
| | | cards = [] |
| | | # get cards dataset as a json from the query |
| | | while has_more: |
| | | res_file_dir, http_message = request.urlretrieve(url) |
| | | with open(res_file_dir) as res_file: |
| | | with open(res_file_dir, 'r') as res_file: |
| | | res_json = json.loads(res_file.read()) |
| | | cards += res_json['data'] |
| | | has_more = res_json['has_more'] |
| | |
| | | # Convert them into a dataframe, and truncate unnecessary columns |
| | | df = pd.DataFrame.from_dict(cards) |
| | | |
| | | if csv_name != '': |
| | | df = df[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', 'image_uris', |
| | | 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', 'set', 'set_name', 'power', |
| | | 'toughness']] |
| | | df.to_csv(csv_name, sep=';') # Comma doesn't work, since some columns are saved as a dict |
| | | |
| | | if csv_name is not None: |
| | | #df = df[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', 'image_uris', |
| | | # 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', 'set', 'set_name', 'power', |
| | | # 'toughness']] |
| | | df.to_csv(csv_name, sep=';') # Comma seperator doesn't work, since some columns are saved as a dict |
| | | return df |
| | | |
| | | |
| | | def load_all_cards_text(csv_name): |
| | | df = pd.read_csv(csv_name, sep=';') |
| | | df = pd.read_csv(csv_name, sep=';') # Comma seperator doesn't work, since some columns are saved as a dict |
| | | return df |
| | | |
| | | |
| | | # Pulled from Django framework (https://github.com/django/django/blob/master/django/utils/text.py) |
| | | def get_valid_filename(s): |
| | | """ |
| | | Return the given string converted to a string that can be used for a clean |
| | |
| | | underscore, or dot. |
| | | >>> get_valid_filename("john's portrait in 2004.jpg") |
| | | 'johns_portrait_in_2004.jpg' |
| | | From: https://github.com/django/django/blob/master/django/utils/text.py |
| | | :param s: input string |
| | | :return: string of valid filename |
| | | """ |
| | | s = str(s).strip().replace(' ', '_') |
| | | return re.sub(r'(?u)[^-\w.]', '', s) |
| | | |
| | | |
| | | def fetch_cards_image(df, out_dir='', size='png'): |
| | | for ind, row in df.iterrows(): |
| | | png_url = row['image_uris'][size] |
| | | if out_dir == '': |
| | | out_dir = 'data/%s/%s' % (size, row['set']) |
| | | if not os.path.exists(out_dir): |
| | | os.makedirs(out_dir) |
| | | img_name = '%s/%s_%s.png' % (out_dir, row['collector_number'], get_valid_filename(row['name'])) |
| | | request.urlretrieve(png_url, filename=img_name) |
| | | print(img_name) |
| | | pass |
| | | def fetch_all_cards_image(df, out_dir=None, size='png'): |
| | | """ |
| | | Download card images from Scryfall database |
| | | :param df: pandas dataframe (or series) of cards |
| | | :param out_dir: path of output directory |
| | | :param size: Image format given by Scryfall API - 'png', 'large', 'normal', 'small', 'art_crop', 'border_crop' |
| | | :return: |
| | | """ |
| | | if size != 'png': |
| | | print('Note: this repo has been implemented using only \'png\' size. ' |
| | | 'Using %s may result in an unexpected behaviour in other parts of this repo.' % size) |
| | | if isinstance(df, pd.Series): |
| | | # df is a single row of card |
| | | fetch_card_image(df, out_dir, size) |
| | | else: |
| | | from concurrent.futures import ThreadPoolExecutor, wait as fwait |
| | | executor = ThreadPoolExecutor(5) |
| | | # df is a dataframe containing list of cards |
| | | arglist = [] |
| | | for ind, row in df.iterrows(): |
| | | arglist.append(executor.submit(fetch_card_image, row, out_dir, size)) |
| | | fwait(arglist) |
| | | # fetch_card_image(row, out_dir, size) |
| | | |
| | | |
| | | def fetch_card_image(row, out_dir=None, size='png'): |
| | | """ |
| | | Download a card's image from Scryfall database |
| | | :param row: pandas series including the card's information |
| | | :param out_dir: path of the output directory |
| | | :param size: Image format given by Scryfall API - 'png', 'large', 'normal', 'small', 'art_crop', 'border_crop' |
| | | :return: |
| | | """ |
| | | if out_dir is None: |
| | | out_dir = '%s/card_img/%s/%s' % (Config.data_dir, size, row['set']) |
| | | if not os.path.exists(out_dir): |
| | | os.makedirs(out_dir) |
| | | |
| | | # Extract card's name and URL for image accordingly |
| | | # Double-faced cards have a different format, and results in two separate card images |
| | | png_urls = [] |
| | | card_names = [] |
| | | if row['layout'] in ['transform', 'double_faced_token']: |
| | | if isinstance(row['card_faces'], str): # For some reason, dict isn't being parsed in the previous step |
| | | card_faces = ast.literal_eval(row['card_faces']) |
| | | else: |
| | | card_faces = row['card_faces'] |
| | | for i in range(len(card_faces)): |
| | | png_urls.append(card_faces[i]['image_uris'][size]) |
| | | card_names.append(get_valid_filename(card_faces[i]['name'])) |
| | | else: #if row['layout'] == 'normal': |
| | | if isinstance(row['image_uris'], str): # For some reason, dict isn't being parsed in the previous step |
| | | png_urls.append(ast.literal_eval(row['image_uris'])[size]) |
| | | else: |
| | | png_urls.append(row['image_uris'][size]) |
| | | card_names.append(get_valid_filename(row['name'])) |
| | | |
| | | for i in range(len(png_urls)): |
| | | img_name = '%s/%s_%s.png' % (out_dir, row['collector_number'], card_names[i]) |
| | | if not os.path.isfile(img_name): |
| | | request.urlretrieve(png_urls[i], filename=img_name) |
| | | print(img_name) |
| | | |
| | | |
| | | def main(): |
| | | df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+set:rtr+lang:en', |
| | | csv_name='data/all_cards.csv') |
| | | #fetch_cards_image(df) |
| | | pass |
| | | # Query card data by each set, then merge them together |
| | | for set_name in Config.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name) |
| | | print(csv_name) |
| | | if not os.path.isfile(csv_name): |
| | | df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=set:%s+lang:en' % set_name, |
| | | csv_name=csv_name) |
| | | else: |
| | | df = load_all_cards_text(csv_name) |
| | | df.sort_values('collector_number') |
| | | fetch_all_cards_image(df, out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name)) |
| | | |
| | | #df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+lang:en+frame:2003', |
| | | # csv_name='%s/csv/all.csv' % Config.data_dir) |
| | | return |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |
| | | pass |