Joseph Redmon
2015-04-17 f199fd3b6464e644566d76676c0b5f1824d26c4e
src/convolutional_layer.c
@@ -29,7 +29,7 @@
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(h,w,c,layer.output);
    return float_to_image(w,h,c,layer.output);
}
image get_convolutional_delta(convolutional_layer layer)
@@ -38,7 +38,7 @@
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(h,w,c,layer.delta);
    return float_to_image(w,h,c,layer.delta);
}
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
@@ -61,7 +61,7 @@
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    float scale = 1./sqrt(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
    for(i = 0; i < n; ++i){
        layer->biases[i] = scale;
    }
@@ -129,11 +129,10 @@
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
{
    float alpha = 1./batch;
    int i,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            bias_updates[i] += alpha * sum_array(delta+size*(i+b*n), size);
            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
        }
    }
}
@@ -167,7 +166,6 @@
void backward_convolutional_layer(convolutional_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int i;
    int m = layer.n;
    int n = layer.size*layer.size*layer.c;
@@ -188,7 +186,7 @@
        im2col_cpu(im, layer.c, layer.h, layer.w, 
                layer.size, layer.stride, layer.pad, b);
        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
        if(state.delta){
            a = layer.filters;
@@ -202,14 +200,14 @@
    }
}
void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay)
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
    axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
    axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
    axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, momentum, layer.filter_updates, 1);
}
@@ -219,42 +217,22 @@
    int h = layer.size;
    int w = layer.size;
    int c = layer.c;
    return float_to_image(h,w,c,layer.filters+i*h*w*c);
    return float_to_image(w,h,c,layer.filters+i*h*w*c);
}
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
image *get_filters(convolutional_layer layer)
{
    image *filters = calloc(layer.n, sizeof(image));
    int i,j,k,c;
    if(!prev_filters){
        for(i = 0; i < layer.n; ++i){
            filters[i] = copy_image(get_convolutional_filter(layer, i));
        }
    }
    else{
        image base = prev_filters[0];
        for(i = 0; i < layer.n; ++i){
            image filter = get_convolutional_filter(layer, i);
            filters[i] = make_image(base.h, base.w, base.c);
            for(j = 0; j < layer.size; ++j){
                for(k = 0; k < layer.size; ++k){
                    for(c = 0; c < layer.c; ++c){
                        float weight = get_pixel(filter, j, k, c);
                        image prev_filter = copy_image(prev_filters[c]);
                        scale_image(prev_filter, weight);
                        add_into_image(prev_filter, filters[i], 0,0);
                        free_image(prev_filter);
                    }
                }
            }
        }
    int i;
    for(i = 0; i < layer.n; ++i){
        filters[i] = copy_image(get_convolutional_filter(layer, i));
    }
    return filters;
}
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
{
    image *single_filters = weighted_sum_filters(layer, 0);
    image *single_filters = get_filters(layer);
    show_images(single_filters, layer.n, window);
    image delta = get_convolutional_image(layer);