old mode 100644
new mode 100755
| | |
| | | import cv2 |
| | | import numpy as np |
| | | import pandas as pd |
| | | import imagehash as ih |
| | | import os |
| | | import argparse |
| | | import ast |
| | | import queue |
| | | import sys |
| | | import math |
| | | import random |
| | | import collections |
| | | import cv2 |
| | | import imagehash as ih |
| | | import numpy as np |
| | | from operator import itemgetter |
| | | import time |
| | | import os |
| | | import pandas as pd |
| | | from PIL import Image |
| | | import time |
| | | from multiprocessing import Pool |
| | | from config import Config |
| | | import fetch_data |
| | | import transform_data |
| | | |
| | | card_width = 315 |
| | | card_height = 440 |
| | | |
| | | |
| | | def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4): |
| | | """ |
| | | As of the current version, the YOLO network has been removed from this code during optimization. |
| | | It was found out that YOLO was adding too much processing delay, and the benefits from using it couldn't justify |
| | | such heavy cost. |
| | | If you're interested to see the implementation using YOLO, please check out the previous commit: |
| | | https://github.com/hj3yoo/mtg_card_detector/tree/dea64611730c84a59c711c61f7f80948f82bcd31 |
| | | """ |
| | | |
| | | def do_calc(args): |
| | | card_pool = args[0] |
| | | hash_size = args[1] |
| | | new_pool = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | new_pool['card_hash'] = np.NaN |
| | | new_pool['art_hash'] = np.NaN |
| | | for hs in hash_size: |
| | | new_pool['card_hash_%d' % hs] = np.NaN |
| | | new_pool['set_hash_%d' % 64] = np.NaN |
| | | #new_pool['art_hash_%d' % hs] = np.NaN |
| | | for ind, card_info in card_pool.iterrows(): |
| | | if ind % 100 == 0: |
| | | print(ind) |
| | | print('Calculating hashes: %dth card' % ind) |
| | | |
| | | card_names = [] |
| | | # Double-faced cards have a different json format than normal cards |
| | | if card_info['layout'] in ['transform', 'double_faced_token']: |
| | | if isinstance(card_info['card_faces'], str): # For some reason, dict isn't being parsed in the previous step |
| | | if isinstance(card_info['card_faces'], str): |
| | | card_faces = ast.literal_eval(card_info['card_faces']) |
| | | else: |
| | | card_faces = card_info['card_faces'] |
| | |
| | | card_names.append(card_info['name']) |
| | | |
| | | for card_name in card_names: |
| | | # Fetch the image - name can be found based on the card's information |
| | | card_info['name'] = card_name |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], |
| | | cname = card_name |
| | | if cname == 'con': |
| | | cname == 'con__' |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | fetch_data.get_valid_filename(cname)) |
| | | card_img = cv2.imread(img_name) |
| | | |
| | | # If the image doesn't exist, download it from the URL |
| | | if card_img is None: |
| | | set_name = card_info['set'] |
| | | if set_name == 'con': |
| | | set_name = 'con__' |
| | | fetch_data.fetch_card_image(card_info, |
| | | out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set'])) |
| | | out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name)) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | | continue |
| | | """ |
| | | img_cc = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY) |
| | | img_thresh = cv2.adaptiveThreshold(img_cc, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5) |
| | | # Dilute the image, then erode them to remove minor noises |
| | | kernel = np.ones((3, 3), np.uint8) |
| | | img_dilate = cv2.dilate(img_thresh, kernel, iterations=1) |
| | | img_erode = cv2.erode(img_dilate, kernel, iterations=1) |
| | | cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True) |
| | | cnts2 = cnts2[:10] |
| | | if True: |
| | | cv2.drawContours(img_cc, cnts2, -1, (0, 255, 0), 3) |
| | | #cv2.imshow('Contours', card_img) |
| | | #cv2.waitKey(10000) |
| | | """ |
| | | set_img = card_img[595:635, 600:690] |
| | | #cv2.imshow(card_info['name'], set_img) |
| | | # Compute value of the card's perceptual hash, then store it to the database |
| | | #img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image |
| | | #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) |
| | | #card_pool.at[ind, 'art_hash'] = art_hash |
| | | img_card = Image.fromarray(card_img) |
| | | card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | #card_pool.at[ind, 'card_hash'] = card_hash |
| | | card_info['card_hash'] = card_hash |
| | | #print(new_pool.index.max()) |
| | | img_set = Image.fromarray(set_img) |
| | | for hs in hash_size: |
| | | card_hash = ih.phash(img_card, hash_size=hs) |
| | | set_hash = ih.whash(img_set, hash_size=64) |
| | | card_info['card_hash_%d' % hs] = card_hash |
| | | card_info['set_hash_%d' % 64] = set_hash |
| | | #print('Setting set_hash_%d' % hs) |
| | | #art_hash = ih.phash(img_art, hash_size=hs) |
| | | #card_info['art_hash_%d' % hs] = art_hash |
| | | new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info |
| | | return new_pool |
| | | |
| | | new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', |
| | | 'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', |
| | | 'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']] |
| | | def calc_image_hashes(card_pool, save_to=None, hash_size=None): |
| | | """ |
| | | Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed |
| | | :param card_pool: pandas dataframe containing all card information |
| | | :param save_to: path for the pickle file to be saved |
| | | :param hash_size: param for pHash algorithm |
| | | :return: pandas dataframe |
| | | """ |
| | | if hash_size is None: |
| | | hash_size = [16, 32] |
| | | elif isinstance(hash_size, int): |
| | | hash_size = [hash_size] |
| | | |
| | | num_cores = 16 |
| | | num_partitions = round(card_pool.shape[0]/1000) |
| | | if num_partitions < min(num_cores, card_pool.shape[0]): |
| | | num_partitions = min(num_cores, card_pool.shape[0]) |
| | | pool = Pool(num_cores) |
| | | df_split = np.array_split(card_pool, num_partitions) |
| | | new_pool = pd.concat(pool.map(do_calc, [(split, hash_size) for split in df_split])) |
| | | pool.close() |
| | | pool.join() |
| | | # Since some double-faced cards may result in two different cards, create a new dataframe to store the result |
| | | |
| | | if save_to is not None: |
| | | new_pool.to_pickle(save_to) |
| | | return new_pool |
| | |
| | | |
| | | # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ |
| | | def order_points(pts): |
| | | # initialzie a list of coordinates that will be ordered |
| | | # such that the first entry in the list is the top-left, |
| | | # the second entry is the top-right, the third is the |
| | | # bottom-right, and the fourth is the bottom-left |
| | | """ |
| | | initialzie a list of coordinates that will be ordered such that the first entry in the list is the top-left, |
| | | the second entry is the top-right, the third is the bottom-right, and the fourth is the bottom-left |
| | | :param pts: array containing 4 points |
| | | :return: ordered list of 4 points |
| | | """ |
| | | rect = np.zeros((4, 2), dtype="float32") |
| | | |
| | | # the top-left point will have the smallest sum, whereas |
| | |
| | | return rect |
| | | |
| | | |
| | | # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ |
| | | def four_point_transform(image, pts): |
| | | """ |
| | | Transform a quadrilateral section of an image into a rectangular area |
| | | From: www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ |
| | | :param image: source image |
| | | :param pts: 4 corners of the quadrilateral |
| | | :return: rectangular image of the specified area |
| | | """ |
| | | # obtain a consistent order of the points and unpack them |
| | | # individually |
| | | rect = order_points(pts) |
| | |
| | | return warped |
| | | |
| | | |
| | | # Get the names of the output layers |
| | | def get_outputs_names(net): |
| | | # Get the names of all the layers in the network |
| | | layers_names = net.getLayerNames() |
| | | # Get the names of the output layers, i.e. the layers with unconnected outputs |
| | | return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
| | | |
| | | |
| | | # Remove the bounding boxes with low confidence using non-maxima suppression |
| | | # https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ |
| | | def post_process(frame, outs, thresh_conf, thresh_nms): |
| | | frame_height = frame.shape[0] |
| | | frame_width = frame.shape[1] |
| | | |
| | | # Scan through all the bounding boxes output from the network and keep only the |
| | | # ones with high confidence scores. Assign the box's class label as the class with the highest score. |
| | | class_ids = [] |
| | | confidences = [] |
| | | boxes = [] |
| | | for out in outs: |
| | | for detection in out: |
| | | scores = detection[5:] |
| | | class_id = np.argmax(scores) |
| | | confidence = scores[class_id] |
| | | if confidence > thresh_conf: |
| | | center_x = int(detection[0] * frame_width) |
| | | center_y = int(detection[1] * frame_height) |
| | | width = int(detection[2] * frame_width) |
| | | height = int(detection[3] * frame_height) |
| | | left = int(center_x - width / 2) |
| | | top = int(center_y - height / 2) |
| | | class_ids.append(class_id) |
| | | confidences.append(float(confidence)) |
| | | boxes.append([left, top, width, height]) |
| | | |
| | | # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences. |
| | | indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)] |
| | | |
| | | ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices] |
| | | return ret |
| | | |
| | | |
| | | # Draw the predicted bounding box |
| | | def draw_pred(frame, class_id, classes, conf, left, top, right, bottom): |
| | | # Draw a bounding box. |
| | | cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) |
| | | |
| | | label = '%.2f' % conf |
| | | |
| | | # Get the label for the class name and its confidence |
| | | if classes: |
| | | assert (class_id < len(classes)) |
| | | label = '%s:%s' % (classes[class_id], label) |
| | | |
| | | # Display the label at the top of the bounding box |
| | | label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
| | | top = max(top, label_size[1]) |
| | | cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
| | | |
| | | |
| | | def remove_glare(img): |
| | | """ |
| | | Reduce the effect of glaring in the image |
| | | Inspired from: |
| | | http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html |
| | | The idea is to find area that has low saturation but high value, which is what a glare usually look like. |
| | | :param img: source image |
| | | :return: corrected image with glaring smoothened out |
| | | """ |
| | | img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
| | | _, s, v = cv2.split(img_hsv) |
| | |
| | | return corrected |
| | | |
| | | |
| | | def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=5000): |
| | | def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000, debug=False): |
| | | """ |
| | | Find contours of all cards in the image |
| | | :param img: source image |
| | | :param thresh_c: value of the constant C for adaptive thresholding |
| | | :param kernel_size: dimension of the kernel used for dilation and erosion |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :return: list of candidate contours |
| | | """ |
| | | # Typical pre-processing - grayscale, blurring, thresholding |
| | | img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| | | img_blur = cv2.medianBlur(img_gray, 5) |
| | | img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c) |
| | | |
| | | img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c) |
| | | if debug: |
| | | cv2.imshow('Thres', img_thresh) |
| | | # Dilute the image, then erode them to remove minor noises |
| | | kernel = np.ones(kernel_size, np.uint8) |
| | | img_dilate = cv2.dilate(img_thresh, kernel, iterations=1) |
| | | img_erode = cv2.erode(img_dilate, kernel, iterations=1) |
| | | |
| | | if debug: |
| | | cv2.imshow('Eroded', img_erode) |
| | | # Find the contour |
| | | #img_contour = img_erode.copy() |
| | | _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | if len(cnts) == 0: |
| | | print('no contours') |
| | | #print('no contours') |
| | | return [] |
| | | cv2.drawContours(img, cnts, -1, (0, 0, 255), 1) |
| | | ''' |
| | | next = 0 |
| | | while next != -1: |
| | | img_copy = img.copy() |
| | | print(hier[0][next]) |
| | | cv2.drawContours(img_copy, cnts[hier[0][next][0]], -1, (0, 255, 0), 2) |
| | | cv2.imshow('hi', img_copy) |
| | | cv2.waitKey(0) |
| | | next = hier[0][next][0] |
| | | ''' |
| | | #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR) |
| | | #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1) |
| | | #cv2.imshow('test', img_contour) |
| | | |
| | | ''' |
| | | The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child, |
| | | their previous and next node |
| | | Using (preorder) depth-first search, find the uppermost contour in the hierarchy that satisfies the condition |
| | | The candidate contour must be rectangle (has 4 points) and should be larger than a threshold |
| | | ''' |
| | | |
| | | img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR) |
| | | img_cont_base = img_cont.copy() |
| | | cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True) |
| | | cnts2 = cnts2[:10] |
| | | for i in range(0, len(cnts2)): |
| | | print(i, len(cnts2[i])) |
| | | if debug: |
| | | cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3) |
| | | cv2.imshow('Contours', img_cont) |
| | | # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child |
| | | # their previous and next node |
| | | # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition |
| | | # The candidate contour must be rectangle (has 4 points) and should be larger than a threshold |
| | | cnts_rect = [] |
| | | stack = [(0, hier[0][0])] |
| | | while len(stack) > 0: |
| | |
| | | size = cv2.contourArea(cnt) |
| | | peri = cv2.arcLength(cnt, True) |
| | | approx = cv2.approxPolyDP(cnt, 0.04 * peri, True) |
| | | if size >= size_thresh: |
| | | cv2.drawContours(img, [cnt], -1, (255, 0, 0), 1) |
| | | #print(size) |
| | | if len(approx) == 4: |
| | | if size >= size_thresh and len(approx) == 4: |
| | | # lets see if we got a contour very close in size as child |
| | | if i_child != -1: |
| | | img_ccont = img_cont_base.copy() |
| | | # lets collect all children |
| | | c_list = [cnts[i_child]] |
| | | h_info = hier[0][i_child] |
| | | while h_info[0] != -1: |
| | | cld = cnts[h_info[0]] |
| | | c_list.append(cld) |
| | | h_info = hier[0][h_info[0]] |
| | | # child with biggest area |
| | | c_list.sort(key=cv2.contourArea, reverse=True) |
| | | c_cnt = c_list[0] # the biggest child |
| | | if debug: |
| | | cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1) |
| | | cv2.imshow('CCont %d' % i_cnt, img_ccont) |
| | | c_size = cv2.contourArea(c_cnt) |
| | | c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True) |
| | | if len(c_approx) == 4 and (c_size/size) > 0.85: |
| | | rect = cv2.minAreaRect(c_cnt) |
| | | box = cv2.boxPoints(rect) |
| | | box = np.intp(box) |
| | | print(c_cnt) |
| | | print(box) |
| | | |
| | | print('CSize:', c_size, '%:', c_size/size) |
| | | b2 = [] |
| | | for x in box: |
| | | b2.append([x]) |
| | | cnts_rect.append(np.array(b2)) |
| | | else: |
| | | print('CF:', (c_size/size)) |
| | | print('Size:', size) |
| | | cnts_rect.append(approx) |
| | | else: |
| | | #print('CF:', (c_size/size)) |
| | | print('Size:', size) |
| | | cnts_rect.append(approx) |
| | | else: |
| | | if i_child != -1: |
| | | stack.append((i_child, hier[0][i_child])) |
| | | |
| | | |
| | | ''' |
| | | # For each contours detected, check if they are large enough and are rectangle |
| | | ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True) |
| | | for i in range(len(cnts)): |
| | | peri = cv2.arcLength(cnts[ind_sort[i]], True) |
| | | approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True) |
| | | if len(approx) == 4: |
| | | cnts_rect.append(approx) |
| | | ''' |
| | | |
| | | return cnts_rect |
| | | |
| | | |
| | | def draw_card_graph(exist_cards, card_pool, f_len): |
| | | w_card = 63 |
| | | """ |
| | | Given the history of detected cards in the current and several previous frames, draw a simple graph |
| | | displaying the detected cards with its confidence level |
| | | :param exist_cards: History of all detected cards in the previous (f_len) frames |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param f_len: length of windows (in frames) to consider for confidence level |
| | | :return: |
| | | """ |
| | | # Lots of constants to set the dimension of each elements |
| | | w_card = 63 # Width of the card image displayed |
| | | h_card = 88 |
| | | gap = 25 |
| | | gap_sm = 10 |
| | | w_bar = 300 |
| | | gap = 25 # Offset between each elements |
| | | gap_sm = 10 # Small offset |
| | | w_bar = 300 # Length of the confidence bar at 100% |
| | | h_bar = 12 |
| | | txt_scale = 0.8 |
| | | n_cards_p_col = 4 |
| | | w_img = gap + (w_card + gap + w_bar + gap) * 2 |
| | | #h_img = gap + (h_card + gap) * n_cards_p_col |
| | | n_cards_p_col = 4 # Number of cards displayed per one column |
| | | w_img = gap + (w_card + gap + w_bar + gap) * 2 # Dimension of the entire graph (for 2 columns) |
| | | h_img = 480 |
| | | img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8) |
| | | x_anchor = gap |
| | | y_anchor = gap |
| | | |
| | | i = 0 |
| | | |
| | | # Cards are displayed from the most confident to the least |
| | | # Confidence level is calculated by number of frames that the card was detected in |
| | | for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]: |
| | | card_name = key[:key.find('(') - 1] |
| | | card_set = key[key.find('(') + 1:key.find(')')] |
| | | confidence = sum(val) / f_len |
| | | card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0] |
| | | img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | card_img = cv2.imread(img_name) |
| | | img_name = '%s/card_img/tiny/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | # If the card image is not found, just leave it blank |
| | | if os.path.exists(img_name): |
| | | card_img = cv2.imread(img_name) |
| | | else: |
| | | card_img = np.ones((h_card, w_card, 3)) * 255 |
| | | cv2.putText(card_img, 'X', ((w_card - int(txt_scale * 25)) // 2, (h_card + int(txt_scale * 25)) // 2), |
| | | cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (0, 0, 0), 2) |
| | | |
| | | # Insert the card image, card name, and confidence bar to the graph |
| | | img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img |
| | | cv2.putText(img_graph, '%s (%s)' % (card_name, card_set), |
| | | (x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX, |
| | |
| | | return img_graph |
| | | |
| | | |
| | | def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), card_size=1000, |
| | | def detect_frame(img, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, debug=False): |
| | | start_1 = time.time() |
| | | elapsed = [] |
| | | ''' |
| | | # Create a 4D blob from a frame. |
| | | blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) |
| | | """ |
| | | Identify all cards in the input frame, display or save the frame if needed |
| | | :param img: input frame |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param hash_size: param for pHash algorithm |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :param out_path: path to save the result |
| | | :param display: flag for displaying the result |
| | | :param debug: flag for debug mode |
| | | :return: list of detected card's name/set and resulting image |
| | | """ |
| | | |
| | | # Sets the input to the network |
| | | net.setInput(blob) |
| | | |
| | | # Runs the forward pass to get output of the output layers |
| | | outs = net.forward(get_outputs_names(net)) |
| | | elapsed.append((time.time() - start_1) * 1000) |
| | | |
| | | start_2 = time.time() |
| | | img_result = img.copy() |
| | | |
| | | # Remove the bounding boxes with low confidence |
| | | obj_list = post_process(img, outs, thresh_conf, thresh_nms) |
| | | for obj in obj_list: |
| | | class_id, confidence, box = obj |
| | | left, top, width, height = box |
| | | draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height) |
| | | elapsed.append((time.time() - start_2) * 1000) |
| | | ''' |
| | | img_result = img.copy() |
| | | # Put efficiency information. The function getPerfProfile returns the |
| | | # overall time for inference(t) and the timings for each of the layers(in layersTimes) |
| | | #if display: |
| | | # t, _ = net.getPerfProfile() |
| | | # label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) |
| | | # cv2.putText(img_result, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
| | | |
| | | ''' |
| | | Assuming that the model has properly identified all cards, there should be 1 card that can be classified per |
| | | bounding box. Find the largest rectangular contour from the region of interest, and identify the card by |
| | | comparing the perceptual hashing of the image with the other cards' image from the database. |
| | | ''' |
| | | img_result = img.copy() # For displaying and saving |
| | | det_cards = [] |
| | | start_3 = time.time() |
| | | cnts = find_card(img_result) |
| | | # Detect contours of all cards in the image |
| | | cnts = find_card(img_result, size_thresh=size_thresh, debug=debug) |
| | | for i in range(len(cnts)): |
| | | cnt = cnts[i] |
| | | # ignore any contours smaller than threshold |
| | | elapsed.append((time.time() - start_3) * 1000) |
| | | start_4 = time.time() |
| | | # For the region of the image covered by the contour, transform them into a rectangular image |
| | | pts = np.float32([p[0] for p in cnt]) |
| | | img_warp = four_point_transform(img, pts) |
| | | img_warp = cv2.resize(img_warp, (card_width, card_height)) |
| | | elapsed.append((time.time() - start_4) * 1000) |
| | | |
| | | # To identify the card from the card image, perceptual hashing (pHash) algorithm is used |
| | | # Perceptual hash is a hash string built from features of the input medium. If two media are similar |
| | | # (ie. has similar features), their resulting pHash value will be very close. |
| | | # Using this property, the matching card for the given card image can be found by comparing pHash of |
| | | # all cards in the database, then finding the card that results in the minimal difference in pHash value. |
| | | ''' |
| | | img_art = img_warp[47:249, 22:294] |
| | | img_art = Image.fromarray(img_art.astype('uint8'), 'RGB') |
| | | art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) |
| | | card_pool['hash_diff'] = card_pool['art_hash'] - art_hash |
| | | min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] |
| | | card_name = min_cards.iloc[0]['name'] |
| | | art_hash = ih.phash(img_art, hash_size=hash_size).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash)) |
| | | ''' |
| | | start_5 = time.time() |
| | | img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') |
| | | card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash)) |
| | | min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] |
| | | card_name = min_cards.iloc[0]['name'] |
| | | card_set = min_cards.iloc[0]['set'] |
| | | det_cards.append((card_name, card_set)) |
| | | hash_diff = min_cards.iloc[0]['hash_diff'] |
| | | elapsed.append((time.time() - start_5) * 1000) |
| | | img_card_size = img_warp.shape |
| | | print(img_card_size) |
| | | cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)] |
| | | print(cut) |
| | | img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]] |
| | | print(img_set_part.shape) |
| | | img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB') |
| | | if debug: |
| | | cv2.imshow("Set Img#%d" % i, img_set_part) |
| | | |
| | | # Display the result |
| | | # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time |
| | | card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size] |
| | | card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash)) |
| | | min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0] |
| | | hash_diff = min_card['hash_diff'] |
| | | |
| | | top_matches = sorted(card_pool['hash_diff']) |
| | | card_one = card_pool[card_pool['hash_diff'] == top_matches[0]].iloc[0] |
| | | card_two = card_pool[card_pool['hash_diff'] == top_matches[1]].iloc[0] |
| | | |
| | | if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']: |
| | | set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten() |
| | | cd_data = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | print(list(card_pool.columns.values)) |
| | | candidates = [] |
| | | for ix in range(0, 2): |
| | | cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0] |
| | | cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd |
| | | print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix]) |
| | | |
| | | |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_%d' % 64] |
| | | cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash)) |
| | | conf = sorted(cd_data['set_hash_diff']) |
| | | print('Confs:', conf) |
| | | best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0] |
| | | print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set']) |
| | | |
| | | min_card = best_match |
| | | card_name = min_card['name'] |
| | | card_set = min_card['set'] |
| | | det_cards.append((card_name, card_set)) |
| | | |
| | | # Render the result, and display them if needed |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2) |
| | | cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | if debug: |
| | | # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2) |
| | | cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 1) |
| | | cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | if debug: |
| | | cv2.putText(img_warp, card_name + ':' + card_set + ', ' + str(hash_diff), (0, 20), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1) |
| | | cv2.imshow('card#%d' % i, img_warp) |
| | | #if debug: |
| | | # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | if display: |
| | | cv2.imshow('Result', img_result) |
| | | cv2.waitKey(0) |
| | | |
| | | if out_path is not None: |
| | | cv2.imwrite(out_path, img_result.astype(np.uint8)) |
| | | elapsed = [(time.time() - start_1) * 1000] + elapsed |
| | | #print(', '.join(['%.2f' % t for t in elapsed])) |
| | | return det_cards, img_result |
| | | |
| | | |
| | | def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, |
| | | display=True, debug=False): |
| | | def detect_video(capture, card_pool, hash_size=32, size_thresh=10000, |
| | | out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0): |
| | | """ |
| | | Identify all cards in the continuous video stream, display or save the result if needed |
| | | :param capture: input video stream |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param hash_size: param for pHash algorithm |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :param out_path: path to save the result |
| | | :param display: flag for displaying the result |
| | | :param show_graph: flag to show graph |
| | | :param debug: flag for debug mode |
| | | :return: list of detected card's name/set and resulting image |
| | | :return: |
| | | """ |
| | | # Get the dimension of the output video, and set it up |
| | | if show_graph: |
| | | img_graph = draw_card_graph({}, pd.DataFrame(), -1) # Black image of the graph just to get the dimension |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x + img_graph.shape[1] |
| | | height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0]) |
| | | height += 200 # some space to display last detected cards |
| | | else: |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) |
| | | height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
| | | if out_path is not None: |
| | | img_graph = draw_card_graph({}, None, -1) # Black image of the graph just to get the dimension |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1] |
| | | height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0]) |
| | | vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height)) |
| | | max_num_obj = 0 |
| | | f_len = 10 # number of frames to consider to check for existing cards |
| | | exist_cards = {} |
| | | |
| | | exist_card_single = {} |
| | | written_out_cards = set() |
| | | found_cards = [] |
| | | try: |
| | | while True: |
| | | ret, frame = capture.read() |
| | | croped_img = frame[crop_y:-crop_y, crop_x:-crop_x] |
| | | fimg = cv2.flip(croped_img, -1) |
| | | start_time = time.time() |
| | | if not ret: |
| | | # End of video |
| | | print("End of video. Press any key to exit") |
| | | cv2.waitKey(0) |
| | | break |
| | | # Use the YOLO model to identify each cards annonymously |
| | | start_yolo = time.time() |
| | | det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf, |
| | | thresh_nms=thresh_nms, in_dim=in_dim, out_path=None, display=display, |
| | | debug=debug) |
| | | elapsed_yolo = (time.time() - start_yolo) * 1000 |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | | # If the card previously detected was not found in this trame, append 0 to the list |
| | | # If the card wasn't previously detected, make a new list and add 1 to it |
| | | # If the same card is detected multiple times in the same frame, keep track of the duplicates |
| | | # The confidence will be calculated based on the number of frames the card was detected for |
| | | det_cards_count = collections.Counter(det_cards).items() |
| | | det_cards_list = [] |
| | | for card, count in det_cards_count: |
| | | card_name, card_set = card |
| | | for i in range(count): 1 |
| | | key = '%s (%s) #%d' % (card_name, card_set, i + 1) |
| | | det_cards_list.append(key) |
| | | gone = [] |
| | | for key, val in exist_cards.items(): |
| | | if key in det_cards_list: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [1] |
| | | else: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [0] |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone.append(key) |
| | | for key in det_cards_list: |
| | | if key not in exist_cards.keys(): |
| | | exist_cards[key] = [1] |
| | | for key in gone: |
| | | exist_cards.pop(key) |
| | | start_graph = time.time() |
| | | img_graph = draw_card_graph(exist_cards, card_pool, f_len) |
| | | elapsed_graph = (time.time() - start_graph) * 1000 |
| | | #if debug: |
| | | # max_num_obj = max(max_num_obj, len(obj_list)) |
| | | # for i in range(len(obj_list), max_num_obj): |
| | | # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | # Detect all cards from the current frame |
| | | det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh, |
| | | out_path=None, display=False, debug=debug) |
| | | if show_graph: |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | | # If the card previously detected was not found in this trame, append 0 to the list |
| | | # If the card wasn't previously detected, make a new list and add 1 to it |
| | | # If the same card is detected multiple times in the same frame, keep track of the duplicates |
| | | # The confidence will be calculated based on the number of frames the card was detected for |
| | | det_cards_count = collections.Counter(det_cards).items() |
| | | det_cards_list = [] |
| | | for card, count in det_cards_count: |
| | | card_name, card_set = card |
| | | for i in range(count): 1 |
| | | key = '%s (%s) #%d' % (card_name, card_set, i + 1) |
| | | det_cards_list.append(key) |
| | | gone = [] |
| | | for key, val in exist_cards.items(): |
| | | if key in det_cards_list: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [1] |
| | | else: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [0] |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone.append(key) # not there anymore |
| | | |
| | | start_display = time.time() |
| | | img_save = np.zeros((height, width, 3), dtype=np.uint8) |
| | | img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result |
| | | img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph |
| | | det_card_map = {} |
| | | gone_single = [] |
| | | for card_name, card_set in det_cards: |
| | | skey = '%s (%s)' % (card_name, card_set) |
| | | det_card_map[skey] = (card_name, card_set) |
| | | |
| | | for key, val in exist_card_single.items(): |
| | | if key in det_card_map: |
| | | exist_card_single[key] = exist_card_single[key][1 - f_len:] + [1] |
| | | else: |
| | | exist_card_single[key] = exist_card_single[key][1 - f_len:] + [0] |
| | | |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone_single.append(key) |
| | | if key in written_out_cards: |
| | | written_out_cards.remove(key) |
| | | if len(val) == f_len and sum(val) == f_len: |
| | | if key not in written_out_cards and key in det_card_map: |
| | | written_out_cards.add(key) |
| | | found_cards.append(det_card_map[key]) |
| | | |
| | | for key in det_card_map: |
| | | if key not in exist_card_single.keys(): |
| | | exist_card_single[key] = [1] |
| | | for key in gone_single: |
| | | exist_card_single.pop(key) |
| | | |
| | | |
| | | for key in det_cards_list: |
| | | if key not in exist_cards.keys(): |
| | | exist_cards[key] = [1] |
| | | for key in gone: |
| | | exist_cards.pop(key) |
| | | |
| | | |
| | | # Draw the graph based on the history of detected cards, then concatenate it with the result image |
| | | img_graph = draw_card_graph(exist_cards, card_pool, f_len) |
| | | img_save = np.zeros((height, width, 3), dtype=np.uint8) |
| | | img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result |
| | | img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph |
| | | for c, card in enumerate(reversed(found_cards[-10:]), 1): |
| | | cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
| | | else: |
| | | img_save = img_result |
| | | |
| | | # Display the result |
| | | if display: |
| | | cv2.imshow('result', img_save) |
| | | elapsed_display = (time.time() - start_display) * 1000 |
| | | if debug: |
| | | max_num_obj = max(max_num_obj, len(det_cards)) |
| | | for i in range(len(det_cards), max_num_obj): |
| | | cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | |
| | | elapsed_ms = (time.time() - start_time) * 1000 |
| | | print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display)) |
| | | print('Elapsed time: %.2f ms' % elapsed_ms) |
| | | if out_path is not None: |
| | | vid_writer.write(img_save.astype(np.uint8)) |
| | | cv2.waitKey(1) |
| | |
| | | vid_writer.release() |
| | | cv2.destroyAllWindows() |
| | | |
| | | with open('detect.txt', 'w') as of: |
| | | counter = collections.Counter(found_cards) |
| | | for key in counter: |
| | | of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n') |
| | | |
| | | def main(): |
| | | |
| | | |
| | | def main(args): |
| | | # Specify paths for all necessary files |
| | | test_path = os.path.abspath('test_file/test4.mp4') |
| | | #weight_path = 'backup/tiny_yolo_10_39500.weights' |
| | | #cfg_path = 'cfg/tiny_yolo_10.cfg' |
| | | #class_path = "data/obj_10.names" |
| | | weight_path = 'weights/second_general/tiny_yolo_final.weights' |
| | | cfg_path = 'cfg/tiny_yolo_old.cfg' |
| | | class_path = 'data/obj.names' |
| | | out_dir = 'out' |
| | | if not os.path.isfile(test_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(weight_path): |
| | | print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(cfg_path): |
| | | print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(class_path): |
| | | print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | hash_sizes = {16, 32} |
| | | hash_sizes.add(args.hash_size) |
| | | pck_path = os.path.abspath('card_pool.pck') |
| | | if os.path.isfile(pck_path): |
| | | card_pool = pd.read_pickle(pck_path) |
| | | else: |
| | | print('Warning: pickle for card database %s is not found!' % pck_path) |
| | | # Merge database for all cards, then calculate pHash values of each, store them |
| | | df_list = [] |
| | | for set_name in Config.all_set_list: |
| | | if set_name == 'con': |
| | | set_name = 'con__' |
| | | csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name) |
| | | df = fetch_data.load_all_cards_text(csv_name) |
| | | df_list.append(df) |
| | | card_pool = pd.concat(df_list, sort=True) |
| | | card_pool.reset_index(drop=True, inplace=True) |
| | | card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') |
| | | card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes) |
| | | ch_key = 'card_hash_%d' % args.hash_size |
| | | set_key = 'set_hash_%d' % 64 |
| | | if ch_key not in card_pool.columns: |
| | | # we did not generate this hash_size yet |
| | | print('We need to add hash_size=%d' % (args.hash_size,)) |
| | | card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=[args.hash_size]) |
| | | |
| | | card_pool = card_pool[['name', 'set', 'collector_number', ch_key, set_key]] |
| | | |
| | | ''' |
| | | df_list = [] |
| | | for set_name in fetch_data.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) |
| | | df = fetch_data.load_all_cards_text(csv_name) |
| | | df_list.append(df) |
| | | #print(df) |
| | | card_pool = pd.concat(df_list, sort=True) |
| | | card_pool.reset_index(drop=True, inplace=True) |
| | | card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') |
| | | for hash_size in [8, 16, 32, 64]: |
| | | for highfreq_factor in [4, 8, 16, 32]: |
| | | pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor) |
| | | if not os.path.exists(pck_name): |
| | | print(pck_name) |
| | | calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | ''' |
| | | #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr') |
| | | #card_pool = fetch_data.load_all_cards_text(csv_name) |
| | | #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck') |
| | | #return |
| | | card_pool = pd.read_pickle('card_pool_32_4.pck') |
| | | #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')] |
| | | card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']] |
| | | # Processing time is almost linear to the size of the database |
| | | # Program can be much faster if the search scope for the card can be reduced |
| | | card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)] |
| | | |
| | | # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it |
| | | # significantly increases speed for subtracting hashes in the future. |
| | | card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten()) |
| | | card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten()) |
| | | card_pool[set_key] = card_pool[set_key].apply(lambda x: x.hash.flatten()) |
| | | |
| | | thresh_conf = 0.01 |
| | | thresh_nms = 0.8 |
| | | |
| | | # Setup |
| | | # Read class names from text file |
| | | with open(class_path, 'r') as f: |
| | | classes = [line.strip() for line in f.readlines()] |
| | | # Load up the neural net using the config and weights |
| | | net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) |
| | | net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) |
| | | net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) |
| | | |
| | | # Save the detection result if out_dir is provided |
| | | if out_dir is None or out_dir == '': |
| | | out_path = None |
| | | else: |
| | | f_name = os.path.split(test_path)[1] |
| | | out_path = out_dir + '/' + f_name[:f_name.find('.')] + '.avi' |
| | | # Check if test file is image or video |
| | | test_ext = test_path[test_path.find('.') + 1:] |
| | | |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | img = cv2.imread(test_path) |
| | | detect_frame(net, classes, img, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms) |
| | | else: |
| | | capture = cv2.VideoCapture(0) |
| | | detect_video(net, classes, capture, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms, |
| | | display=True, debug=False) |
| | | # If the test file isn't given, use webcam to capture video |
| | | if args.in_path is None: |
| | | capture = cv2.VideoCapture(0, cv2.CAP_V4L) |
| | | capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG")) |
| | | capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) |
| | | capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path, |
| | | display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200) |
| | | capture.release() |
| | | else: |
| | | # Save the detection result if args.out_path is provided |
| | | if args.out_path is None: |
| | | out_path = None |
| | | else: |
| | | f_name = os.path.split(args.in_path)[1] |
| | | out_path = '%s/%s.avi' % (args.out_path, f_name[:f_name.find('.')]) |
| | | |
| | | if not os.path.isfile(args.in_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(args.in_path)) |
| | | return |
| | | # Check if test file is image or video |
| | | test_ext = args.in_path[args.in_path.find('.') + 1:] |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | # Test file is an image |
| | | img = cv2.imread(args.in_path) |
| | | if img is None: |
| | | print('Could not read', args.in_path) |
| | | detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display, |
| | | debug=args.debug) |
| | | else: |
| | | # Test file is a video |
| | | capture = cv2.VideoCapture(args.in_path) |
| | | detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display, |
| | | show_graph=args.show_graph, debug=args.debug) |
| | | capture.release() |
| | | pass |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |
| | | parser = argparse.ArgumentParser() |
| | | parser.add_argument('-i', '--in', dest='in_path', help='Path of the input file. For webcam, leave it blank', |
| | | type=str) |
| | | parser.add_argument('-o', '--out', dest='out_path', help='Path of the output directory to save the result', |
| | | type=str) |
| | | parser.add_argument('-hs', '--hash_size', dest='hash_size', |
| | | help='Size of the hash for pHash algorithm', type=int, default=16) |
| | | parser.add_argument('-dsp', '--display', dest='display', help='Display the result', action='store_true', |
| | | default=False) |
| | | parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False) |
| | | parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output', |
| | | action='store_true', default=False) |
| | | args = parser.parse_args() |
| | | if not args.display and args.out_path is None: |
| | | # Then why the heck are you running this thing in the first place? |
| | | print('The program isn\'t displaying nor saving any output file. Please change the setting and try again.') |
| | | exit() |
| | | main(args) |