| | |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "im2col.h" |
| | | #include "col2im.h" |
| | | #include "blas.h" |
| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | |
| | | int convolutional_out_height(convolutional_layer layer) |
| | | #ifdef CUDNN |
| | | #pragma comment(lib, "cudnn.lib") |
| | | #endif |
| | | |
| | | #ifdef AI2 |
| | | #include "xnor_layer.h" |
| | | #endif |
| | | |
| | | #ifndef AI2 |
| | | #define AI2 0 |
| | | void forward_xnor_layer(layer l, network_state state); |
| | | #endif |
| | | |
| | | void swap_binary(convolutional_layer *l) |
| | | { |
| | | int h = layer.h; |
| | | if (!layer.pad) h -= layer.size; |
| | | else h -= 1; |
| | | return h/layer.stride + 1; |
| | | float *swap = l->weights; |
| | | l->weights = l->binary_weights; |
| | | l->binary_weights = swap; |
| | | |
| | | #ifdef GPU |
| | | swap = l->weights_gpu; |
| | | l->weights_gpu = l->binary_weights_gpu; |
| | | l->binary_weights_gpu = swap; |
| | | #endif |
| | | } |
| | | |
| | | int convolutional_out_width(convolutional_layer layer) |
| | | void binarize_weights(float *weights, int n, int size, float *binary) |
| | | { |
| | | int w = layer.w; |
| | | if (!layer.pad) w -= layer.size; |
| | | else w -= 1; |
| | | return w/layer.stride + 1; |
| | | int i, f; |
| | | for(f = 0; f < n; ++f){ |
| | | float mean = 0; |
| | | for(i = 0; i < size; ++i){ |
| | | mean += fabs(weights[f*size + i]); |
| | | } |
| | | mean = mean / size; |
| | | for(i = 0; i < size; ++i){ |
| | | binary[f*size + i] = (weights[f*size + i] > 0) ? mean: -mean; |
| | | } |
| | | } |
| | | } |
| | | |
| | | image get_convolutional_image(convolutional_layer layer) |
| | | { |
| | | int h,w,c; |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | | { |
| | | int h,w,c; |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) |
| | | void binarize_cpu(float *input, int n, float *binary) |
| | | { |
| | | int i; |
| | | convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); |
| | | |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->batch = batch; |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | layer->pad = pad; |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | float scale = 1./sqrt(size*size*c); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | layer->biases[i] = scale; |
| | | binary[i] = (input[i] > 0) ? 1 : -1; |
| | | } |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); |
| | | layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size); |
| | | layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size); |
| | | |
| | | layer->biases_gpu = cuda_make_array(layer->biases, n); |
| | | layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n); |
| | | |
| | | layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n); |
| | | layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n); |
| | | #endif |
| | | layer->activation = activation; |
| | | |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | void resize_convolutional_layer(convolutional_layer *layer, int h, int w) |
| | | void binarize_input(float *input, int n, int size, float *binary) |
| | | { |
| | | layer->h = h; |
| | | layer->w = w; |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = realloc(layer->col_image, |
| | | out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); |
| | | layer->output = realloc(layer->output, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | layer->delta = realloc(layer->delta, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(layer->col_image_gpu); |
| | | cuda_free(layer->delta_gpu); |
| | | cuda_free(layer->output_gpu); |
| | | |
| | | layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n); |
| | | layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n); |
| | | #endif |
| | | int i, s; |
| | | for(s = 0; s < size; ++s){ |
| | | float mean = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | mean += fabs(input[i*size + s]); |
| | | } |
| | | mean = mean / n; |
| | | for(i = 0; i < n; ++i){ |
| | | binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void bias_output(float *output, float *biases, int batch, int n, int size) |
| | | int convolutional_out_height(convolutional_layer l) |
| | | { |
| | | return (l.h + 2*l.pad - l.size) / l.stride + 1; |
| | | } |
| | | |
| | | int convolutional_out_width(convolutional_layer l) |
| | | { |
| | | return (l.w + 2*l.pad - l.size) / l.stride + 1; |
| | | } |
| | | |
| | | image get_convolutional_image(convolutional_layer l) |
| | | { |
| | | int h,w,c; |
| | | h = convolutional_out_height(l); |
| | | w = convolutional_out_width(l); |
| | | c = l.n; |
| | | return float_to_image(w,h,c,l.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer l) |
| | | { |
| | | int h,w,c; |
| | | h = convolutional_out_height(l); |
| | | w = convolutional_out_width(l); |
| | | c = l.n; |
| | | return float_to_image(w,h,c,l.delta); |
| | | } |
| | | |
| | | size_t get_workspace_size(layer l){ |
| | | #ifdef CUDNN |
| | | if(gpu_index >= 0){ |
| | | size_t most = 0; |
| | | size_t s = 0; |
| | | cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.weightDesc, |
| | | l.convDesc, |
| | | l.dstTensorDesc, |
| | | l.fw_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dweightDesc, |
| | | l.bf_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), |
| | | l.weightDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dsrcTensorDesc, |
| | | l.bd_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | return most; |
| | | } |
| | | #endif |
| | | if(l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float); |
| | | return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | #ifdef CUDNN |
| | | void cudnn_convolutional_setup(layer *l, int cudnn_preference) |
| | | { |
| | | |
| | | #ifdef CUDNN_HALF |
| | | // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): |
| | | // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 |
| | | // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! |
| | | const cudnnDataType_t data_type = CUDNN_DATA_HALF; |
| | | #else |
| | | cudnnDataType_t data_type = CUDNN_DATA_FLOAT; |
| | | #endif |
| | | |
| | | #if(CUDNN_MAJOR >= 7) |
| | | // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH |
| | | // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT |
| | | // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF |
| | | // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/ |
| | | // 1. Accumulation into FP32 |
| | | // 2. Loss Scaling - required only for: activation gradients. We do not use. |
| | | // 3. FP32 Master Copy of Weights |
| | | // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops |
| | | cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH); |
| | | #endif |
| | | |
| | | // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported |
| | | // on architectures with DP4A support (compute capability 6.1 and later). |
| | | //cudnnDataType_t data_type = CUDNN_DATA_INT8; |
| | | |
| | | // backward delta |
| | | cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w); |
| | | cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
| | | cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
| | | |
| | | // forward |
| | | cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w); |
| | | cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
| | | cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
| | | |
| | | // batch norm |
| | | cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); |
| | | cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); |
| | | |
| | | cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
| | | #if(CUDNN_MAJOR >= 6) |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0 |
| | | #else |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1 |
| | | #endif |
| | | int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; |
| | | int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; |
| | | int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; |
| | | if (cudnn_preference == cudnn_smallest) |
| | | { |
| | | forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; |
| | | backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; |
| | | backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; |
| | | printf(" CUDNN-slow "); |
| | | } |
| | | |
| | | cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), |
| | | l->srcTensorDesc, |
| | | l->weightDesc, |
| | | l->convDesc, |
| | | l->dstTensorDesc, |
| | | forward_algo, |
| | | 0, |
| | | &l->fw_algo); |
| | | cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), |
| | | l->weightDesc, |
| | | l->ddstTensorDesc, |
| | | l->convDesc, |
| | | l->dsrcTensorDesc, |
| | | backward_algo, |
| | | 0, |
| | | &l->bd_algo); |
| | | cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), |
| | | l->srcTensorDesc, |
| | | l->ddstTensorDesc, |
| | | l->convDesc, |
| | | l->dweightDesc, |
| | | backward_filter, |
| | | 0, |
| | | &l->bf_algo); |
| | | |
| | | if (data_type == CUDNN_DATA_HALF) |
| | | { |
| | | // HALF-16 if(data_type == CUDNN_DATA_HALF) |
| | | l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; |
| | | l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; |
| | | l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; |
| | | |
| | | // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT) |
| | | //l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED; |
| | | //l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED; |
| | | //l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED; |
| | | |
| | | int fw = 0, bd = 0, bf = 0; |
| | | if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1; |
| | | //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n"); |
| | | if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2; |
| | | //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1; |
| | | //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 \n"); |
| | | if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2; |
| | | //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1; |
| | | //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 \n"); |
| | | if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2; |
| | | //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | //if (fw == 2 && bd == 2 && bf == 2) printf("TF "); |
| | | //else if (fw == 1 && bd == 1 && bf == 1) printf("TH "); |
| | | } |
| | | } |
| | | #endif |
| | | #endif |
| | | |
| | | convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam) |
| | | { |
| | | int i; |
| | | convolutional_layer l = {0}; |
| | | l.type = CONVOLUTIONAL; |
| | | |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.n = n; |
| | | l.binary = binary; |
| | | l.xnor = xnor; |
| | | l.batch = batch; |
| | | l.stride = stride; |
| | | l.size = size; |
| | | l.pad = padding; |
| | | l.batch_normalize = batch_normalize; |
| | | |
| | | l.weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.weight_updates = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | l.biases = calloc(n, sizeof(float)); |
| | | l.bias_updates = calloc(n, sizeof(float)); |
| | | |
| | | // float scale = 1./sqrt(size*size*c); |
| | | float scale = sqrt(2./(size*size*c)); |
| | | for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1); |
| | | int out_h = convolutional_out_height(l); |
| | | int out_w = convolutional_out_width(l); |
| | | l.out_h = out_h; |
| | | l.out_w = out_w; |
| | | l.out_c = n; |
| | | l.outputs = l.out_h * l.out_w * l.out_c; |
| | | l.inputs = l.w * l.h * l.c; |
| | | |
| | | l.output = calloc(l.batch*l.outputs, sizeof(float)); |
| | | l.delta = calloc(l.batch*l.outputs, sizeof(float)); |
| | | |
| | | l.forward = forward_convolutional_layer; |
| | | l.backward = backward_convolutional_layer; |
| | | l.update = update_convolutional_layer; |
| | | if(binary){ |
| | | l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.cweights = calloc(c*n*size*size, sizeof(char)); |
| | | l.scales = calloc(n, sizeof(float)); |
| | | } |
| | | if(xnor){ |
| | | l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); |
| | | |
| | | int align = 8; |
| | | int src_align = l.out_h*l.out_w; |
| | | l.bit_align = src_align + (align - src_align % align); |
| | | } |
| | | |
| | | if(batch_normalize){ |
| | | l.scales = calloc(n, sizeof(float)); |
| | | l.scale_updates = calloc(n, sizeof(float)); |
| | | for(i = 0; i < n; ++i){ |
| | | l.scales[i] = 1; |
| | | } |
| | | |
| | | l.mean = calloc(n, sizeof(float)); |
| | | l.variance = calloc(n, sizeof(float)); |
| | | |
| | | l.mean_delta = calloc(n, sizeof(float)); |
| | | l.variance_delta = calloc(n, sizeof(float)); |
| | | |
| | | l.rolling_mean = calloc(n, sizeof(float)); |
| | | l.rolling_variance = calloc(n, sizeof(float)); |
| | | l.x = calloc(l.batch*l.outputs, sizeof(float)); |
| | | l.x_norm = calloc(l.batch*l.outputs, sizeof(float)); |
| | | } |
| | | if(adam){ |
| | | l.adam = 1; |
| | | l.m = calloc(c*n*size*size, sizeof(float)); |
| | | l.v = calloc(c*n*size*size, sizeof(float)); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_convolutional_layer_gpu; |
| | | l.backward_gpu = backward_convolutional_layer_gpu; |
| | | l.update_gpu = update_convolutional_layer_gpu; |
| | | |
| | | if(gpu_index >= 0){ |
| | | if (adam) { |
| | | l.m_gpu = cuda_make_array(l.m, c*n*size*size); |
| | | l.v_gpu = cuda_make_array(l.v, c*n*size*size); |
| | | } |
| | | |
| | | l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | #ifdef CUDNN_HALF |
| | | l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2); |
| | | l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2); |
| | | #endif |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); |
| | | |
| | | l.biases_gpu = cuda_make_array(l.biases, n); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); |
| | | |
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | |
| | | if(binary){ |
| | | l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | } |
| | | if(xnor){ |
| | | l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); |
| | | } |
| | | |
| | | if(batch_normalize){ |
| | | l.mean_gpu = cuda_make_array(l.mean, n); |
| | | l.variance_gpu = cuda_make_array(l.variance, n); |
| | | |
| | | l.rolling_mean_gpu = cuda_make_array(l.mean, n); |
| | | l.rolling_variance_gpu = cuda_make_array(l.variance, n); |
| | | |
| | | l.mean_delta_gpu = cuda_make_array(l.mean, n); |
| | | l.variance_delta_gpu = cuda_make_array(l.variance, n); |
| | | |
| | | l.scales_gpu = cuda_make_array(l.scales, n); |
| | | l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); |
| | | |
| | | l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | } |
| | | #ifdef CUDNN |
| | | cudnnCreateTensorDescriptor(&l.normDstTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.normDstTensorDescF16); |
| | | cudnnCreateTensorDescriptor(&l.normTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.srcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.dstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.weightDesc); |
| | | cudnnCreateTensorDescriptor(&l.dsrcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.ddstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.dweightDesc); |
| | | cudnnCreateConvolutionDescriptor(&l.convDesc); |
| | | cudnn_convolutional_setup(&l, cudnn_fastest); |
| | | #endif |
| | | } |
| | | #endif |
| | | l.workspace_size = get_workspace_size(l); |
| | | l.activation = activation; |
| | | |
| | | //fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); |
| | | l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.; |
| | | fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void denormalize_convolutional_layer(convolutional_layer l) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < l.n; ++i){ |
| | | float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); |
| | | for(j = 0; j < l.c*l.size*l.size; ++j){ |
| | | l.weights[i*l.c*l.size*l.size + j] *= scale; |
| | | } |
| | | l.biases[i] -= l.rolling_mean[i] * scale; |
| | | l.scales[i] = 1; |
| | | l.rolling_mean[i] = 0; |
| | | l.rolling_variance[i] = 1; |
| | | } |
| | | } |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0); |
| | | l.batch_normalize = 1; |
| | | float data[] = {1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3}; |
| | | network_state state = {0}; |
| | | state.input = data; |
| | | forward_convolutional_layer(l, state); |
| | | } |
| | | |
| | | void resize_convolutional_layer(convolutional_layer *l, int w, int h) |
| | | { |
| | | int old_w = l->w; |
| | | int old_h = l->h; |
| | | l->w = w; |
| | | l->h = h; |
| | | int out_w = convolutional_out_width(*l); |
| | | int out_h = convolutional_out_height(*l); |
| | | |
| | | l->out_w = out_w; |
| | | l->out_h = out_h; |
| | | |
| | | l->outputs = l->out_h * l->out_w * l->out_c; |
| | | l->inputs = l->w * l->h * l->c; |
| | | |
| | | l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); |
| | | l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); |
| | | if(l->batch_normalize){ |
| | | l->x = realloc(l->x, l->batch*l->outputs*sizeof(float)); |
| | | l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float)); |
| | | } |
| | | |
| | | if (l->xnor) { |
| | | //l->binary_input = realloc(l->inputs*l->batch, sizeof(float)); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | if (old_w < w || old_h < h) { |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | |
| | | if (l->batch_normalize) { |
| | | cuda_free(l->x_gpu); |
| | | cuda_free(l->x_norm_gpu); |
| | | |
| | | l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | } |
| | | |
| | | if (l->xnor) { |
| | | cuda_free(l->binary_input_gpu); |
| | | l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch); |
| | | } |
| | | } |
| | | #ifdef CUDNN |
| | | cudnn_convolutional_setup(l, cudnn_fastest); |
| | | #endif |
| | | #endif |
| | | l->workspace_size = get_workspace_size(*l); |
| | | |
| | | #ifdef CUDNN |
| | | // check for excessive memory consumption |
| | | size_t free_byte; |
| | | size_t total_byte; |
| | | check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
| | | if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { |
| | | printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2); |
| | | cudnn_convolutional_setup(l, cudnn_smallest); |
| | | l->workspace_size = get_workspace_size(*l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void add_bias(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | int i,j,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < size; ++j){ |
| | | output[(b*n + i)*size + j] = biases[i]; |
| | | output[(b*n + i)*size + j] += biases[i]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void scale_bias(float *output, float *scales, int batch, int n, int size) |
| | | { |
| | | int i,j,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < size; ++j){ |
| | | output[(b*n + i)*size + j] *= scales[i]; |
| | | } |
| | | } |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, network_state state) |
| | | void gemm_nn_custom(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | int i; |
| | | |
| | | bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w); |
| | | |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = out_h*out_w; |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_cpu(state.input, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | c += n*m; |
| | | state.input += layer.c*layer.h*layer.w; |
| | | } |
| | | activate_array(layer.output, m*n*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); |
| | | backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k); |
| | | |
| | | if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float *a = layer.delta + i*m*k; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | | float *im = state.input+i*layer.c*layer.h*layer.w; |
| | | |
| | | im2col_cpu(im, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | a = layer.filters; |
| | | b = layer.delta + i*m*k; |
| | | c = layer.col_image; |
| | | |
| | | gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); |
| | | |
| | | col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, momentum, layer.filter_updates, 1); |
| | | } |
| | | |
| | | |
| | | image get_convolutional_filter(convolutional_layer layer, int i) |
| | | { |
| | | int h = layer.size; |
| | | int w = layer.size; |
| | | int c = layer.c; |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) |
| | | { |
| | | image *filters = calloc(layer.n, sizeof(image)); |
| | | int i,j,k,c; |
| | | if(!prev_filters){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | } |
| | | else{ |
| | | image base = prev_filters[0]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image filter = get_convolutional_filter(layer, i); |
| | | filters[i] = make_image(base.h, base.w, base.c); |
| | | for(j = 0; j < layer.size; ++j){ |
| | | for(k = 0; k < layer.size; ++k){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | float weight = get_pixel(filter, j, k, c); |
| | | image prev_filter = copy_image(prev_filters[c]); |
| | | scale_image(prev_filter, weight); |
| | | add_into_image(prev_filter, filters[i], 0,0); |
| | | free_image(prev_filter); |
| | | } |
| | | } |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | //printf("\n weight = %f \n", A_PART); |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) |
| | | { |
| | | image *single_filters = weighted_sum_filters(layer, 0); |
| | | show_images(single_filters, layer.n, window); |
| | | |
| | | image delta = get_convolutional_image(layer); |
| | | void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) { |
| | | size_t i, counter; |
| | | counter = 0; |
| | | for (i = 0; i < size; i += size / filters) { |
| | | mean_arr[counter++] = fabs(src[i]); |
| | | } |
| | | } |
| | | |
| | | /* |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) { |
| | | |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | size_t i, dst_i, dst_shift; |
| | | for (i = 0; i < size; ++i) { |
| | | if (src[i] > 0) set_bit(dst, i); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) { |
| | | memset(dst, 0, size *sizeof(float)); |
| | | size_t i, src_i, src_shift; |
| | | |
| | | for (i = 0; i < size; ++i) { |
| | | float mean_val = 1; |
| | | if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]); |
| | | if(get_bit(src, i)) dst[i] = mean_val; |
| | | else dst[i] = -mean_val; |
| | | } |
| | | } |
| | | |
| | | void binary_align_weights(convolutional_layer *l) |
| | | { |
| | | int m = l->n; |
| | | int k = l->size*l->size*l->c; |
| | | size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8; |
| | | |
| | | binarize_weights(l->weights, m, k, l->binary_weights); |
| | | |
| | | size_t align_weights_size = new_lda * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | | |
| | | size_t i, j; |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
| | | |
| | | l->mean_arr = calloc(l->n, sizeof(float)); |
| | | get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr); |
| | | |
| | | free(align_weights); |
| | | } |
| | | |
| | | // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin() |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align) |
| | | { |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | //char * |
| | | *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | int src_size = k * bit_align; |
| | | |
| | | float_to_bit(b, t_input, src_size); |
| | | |
| | | // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size |
| | | // t_input - [bit_align, k] - [n', k] |
| | | // t_bit_input - [new_ldb, n] - [k', n] |
| | | |
| | | transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | //transpose_bin(b, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | |
| | | free(t_input); |
| | | |
| | | return t_intput_size; |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int out_h = convolutional_out_height(l); |
| | | int out_w = convolutional_out_width(l); |
| | | int i; |
| | | |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | |
| | | if(l.xnor){ |
| | | if (!l.align_bit_weights) { |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights); |
| | | } |
| | | swap_binary(&l); |
| | | binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); |
| | | state.input = l.binary_input; |
| | | } |
| | | |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = out_h*out_w; |
| | | |
| | | float *a = l.weights; |
| | | float *b = state.workspace; |
| | | float *c = l.output; |
| | | |
| | | static int u = 0; |
| | | u++; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | //im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | //float *t_input = NULL; |
| | | //if (l.xnor) { |
| | | // size_t new_ldb = k + (l.lda_align - k%l.lda_align); |
| | | // size_t t_intput_size = new_ldb * n; |
| | | // t_input = calloc(t_intput_size, sizeof(float)); |
| | | // im2col_cpu_custom_transpose(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, t_input, new_ldb); |
| | | //} |
| | | //if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {} |
| | | //else |
| | | // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin() |
| | | //im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | if (l.xnor) { |
| | | //im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float)); |
| | | im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align); |
| | | |
| | | size_t output_size = l.outputs; |
| | | //float *count_output = calloc(output_size, sizeof(float)); |
| | | //size_t bit_output_size = output_size / 8 + 1; |
| | | //char *bit_output = calloc(bit_output_size, sizeof(char)); |
| | | |
| | | size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col() |
| | | size_t bit_input_size = intput_size / 8 + 1; |
| | | //char *bit_input = calloc(bit_input_size, sizeof(char)); |
| | | |
| | | size_t weights_size = k * m; //l.size*l.size*l.c*l.n; |
| | | size_t bit_weights_size = weights_size / 8 + 1; |
| | | //char *bit_weights = calloc(bit_weights_size, sizeof(char)); |
| | | //float *mean_arr = calloc(l.n, sizeof(float)); |
| | | |
| | | // test: float->bit->float |
| | | //get_mean_array(l.weights, weights_size, l.n, mean_arr); |
| | | //float_to_bit(l.weights, bit_weights, weights_size); |
| | | //memset(l.weights, 0, weights_size * sizeof(float)); |
| | | //bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float |
| | | |
| | | //float_to_bit(b, bit_input, intput_size); |
| | | //memset(b, 0, intput_size * sizeof(float)); |
| | | //bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float |
| | | |
| | | // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
| | | { |
| | | /* |
| | | size_t ldb_align = 256;// 8; |
| | | |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | char *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | |
| | | // transpose and align B |
| | | int i, j; |
| | | for (i = 0; i < n; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | t_input[i*new_ldb + j] = b[j*n + i]; |
| | | } |
| | | } |
| | | float_to_bit(t_input, t_bit_input, t_intput_size); |
| | | |
| | | |
| | | |
| | | if (!l.align_bit_weights) |
| | | { |
| | | size_t align_weights_size = new_ldb * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | | |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_ldb + j] = a[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l.align_bit_weights, align_weights_size); |
| | | |
| | | l.mean_arr = calloc(l.n, sizeof(float)); |
| | | get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr); |
| | | |
| | | free(align_weights); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | if (l.size == 3 && l.stride == 1 && l.pad == 1) |
| | | { |
| | | //binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | //printf("\n mean = %f \n", l.mean_arr[0]); |
| | | |
| | | convolution_2d(l.w, l.h, l.size, l.n, l.c, l.pad, l.stride, |
| | | //l.weights, state.input, l.output, l.mean_arr); |
| | | l.binary_weights, state.input, l.output, l.mean_arr); |
| | | } |
| | | else { |
| | | */ |
| | | |
| | | //size_t ldb_align = 256; // 256 bit for AVX2 |
| | | int ldb_align = l.lda_align; |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align, l.bit_align); |
| | | //char *t_bit_input = calloc(new_ldb * n, sizeof(char)); // for im2col_cpu_custom_transpose() only |
| | | //float_to_bit(t_input, t_bit_input, new_ldb * n); // for im2col_cpu_custom_transpose() only |
| | | |
| | | // 5x times faster than gemm()-float32 |
| | | // further optimizations: accelerate maxpool-layer with OpenMP/AVX |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | |
| | | //free(t_input); |
| | | free(t_bit_input); |
| | | //} |
| | | |
| | | } |
| | | |
| | | // for bit_input: (k * n) |
| | | //if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer |
| | | //else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL); |
| | | |
| | | //gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); |
| | | |
| | | //printf("\n u = %d \n", u); |
| | | |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | |
| | | //int j; |
| | | //if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2); |
| | | |
| | | //free(count_output); |
| | | //free(bit_input); |
| | | //free(bit_weights); |
| | | //free(mean_arr); |
| | | } |
| | | else { |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); |
| | | // bit-count to float |
| | | } |
| | | c += n*m; |
| | | state.input += l.c*l.h*l.w; |
| | | } |
| | | |
| | | if(l.batch_normalize){ |
| | | forward_batchnorm_layer(l, state); |
| | | } |
| | | add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | |
| | | //activate_array(l.output, m*n*l.batch, l.activation); |
| | | activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); |
| | | |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |
| | | void backward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = convolutional_out_height(l)* |
| | | convolutional_out_width(l); |
| | | |
| | | gradient_array(l.output, m*k*l.batch, l.activation, l.delta); |
| | | backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); |
| | | |
| | | if(l.batch_normalize){ |
| | | backward_batchnorm_layer(l, state); |
| | | } |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float *a = l.delta + i*m*k; |
| | | float *b = state.workspace; |
| | | float *c = l.weight_updates; |
| | | |
| | | float *im = state.input+i*l.c*l.h*l.w; |
| | | |
| | | im2col_cpu(im, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | a = l.weights; |
| | | b = l.delta + i*m*k; |
| | | c = state.workspace; |
| | | |
| | | gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); |
| | | |
| | | col2im_cpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = l.size*l.size*l.c*l.n; |
| | | axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.n, momentum, l.bias_updates, 1); |
| | | |
| | | if(l.scales){ |
| | | axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1); |
| | | scal_cpu(l.n, momentum, l.scale_updates, 1); |
| | | } |
| | | |
| | | axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
| | | scal_cpu(size, momentum, l.weight_updates, 1); |
| | | } |
| | | |
| | | |
| | | image get_convolutional_weight(convolutional_layer l, int i) |
| | | { |
| | | int h = l.size; |
| | | int w = l.size; |
| | | int c = l.c; |
| | | return float_to_image(w,h,c,l.weights+i*h*w*c); |
| | | } |
| | | |
| | | void rgbgr_weights(convolutional_layer l) |
| | | { |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | image im = get_convolutional_weight(l, i); |
| | | if (im.c == 3) { |
| | | rgbgr_image(im); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void rescale_weights(convolutional_layer l, float scale, float trans) |
| | | { |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | image im = get_convolutional_weight(l, i); |
| | | if (im.c == 3) { |
| | | scale_image(im, scale); |
| | | float sum = sum_array(im.data, im.w*im.h*im.c); |
| | | l.biases[i] += sum*trans; |
| | | } |
| | | } |
| | | } |
| | | |
| | | image *get_weights(convolutional_layer l) |
| | | { |
| | | image *weights = calloc(l.n, sizeof(image)); |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | weights[i] = copy_image(get_convolutional_weight(l, i)); |
| | | //normalize_image(weights[i]); |
| | | } |
| | | return weights; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights) |
| | | { |
| | | image *single_weights = get_weights(l); |
| | | show_images(single_weights, l.n, window); |
| | | |
| | | image delta = get_convolutional_image(l); |
| | | image dc = collapse_image_layers(delta, 1); |
| | | char buff[256]; |
| | | sprintf(buff, "%s: Output", window); |
| | | //show_image(dc, buff); |
| | | //save_image(dc, buff); |
| | | free_image(dc); |
| | | return single_filters; |
| | | return single_weights; |
| | | } |
| | | |