| | |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | #include <float.h> |
| | | #include <string.h> |
| | | |
| | | #if defined(_OPENMP) |
| | | #include <omp.h> |
| | |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads( max_num_threads / 2); |
| | | //omp_set_num_threads( max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void transpose_8x8_bits(unsigned char A[8], unsigned char B[8], int m, int n) |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | |
| | | //int algin = 8; |
| | | //int ldb = width_col * height_col; |
| | | //int new_ldb = ldb + (algin - ldb % algin); |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | |
| | | /*/ |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | data_col[col_index / 8] = mask; // dst[i / 8] = mask; |
| | | */ |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | //if(val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | //if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | |
| | | /* |
| | | int src_size = bit_align*channels_col; |
| | | char *bit_arr = calloc(src_size, sizeof(float)); |
| | | float_to_bit(data_col, bit_arr, src_size); |
| | | memcpy(data_col, bit_arr, src_size * sizeof(float)); |
| | | free(bit_arr); |
| | | */ |
| | | } |
| | | |
| | | |
| | | void transpose_8x8_bits_my(unsigned char *A, unsigned char *B, int lda, int ldb) |
| | | { |
| | | unsigned x, y, t; |
| | | for (y = 0; y < 8; ++y) { |
| | | for (x = 0; x < 8; ++x) { |
| | | if(A[y * lda] & (1 << x)) B[x * ldb] |= 1 << y; |
| | | } |
| | | } |
| | | } |
| | | |
| | | unsigned char reverse_byte_1(char a) |
| | | { |
| | | return ((a & 0x1) << 7) | ((a & 0x2) << 5) | |
| | | ((a & 0x4) << 3) | ((a & 0x8) << 1) | |
| | | ((a & 0x10) >> 1) | ((a & 0x20) >> 3) | |
| | | ((a & 0x40) >> 5) | ((a & 0x80) >> 7); |
| | | } |
| | | |
| | | unsigned char reverse_byte_2(unsigned char a) |
| | | { |
| | | return ((a * 0x0802LU & 0x22110LU) | (a * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; |
| | | } |
| | | |
| | | static unsigned char lookup[16] = { |
| | | 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| | | 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf, }; |
| | | |
| | | unsigned char reverse_byte(unsigned char n) { |
| | | // Reverse the top and bottom nibble then swap them. |
| | | return (lookup[n & 0b1111] << 4) | lookup[n >> 4]; |
| | | } |
| | | |
| | | |
| | | void transpose8rS32_reversed_diagonale(unsigned char* A, int m, int n, unsigned char* B) |
| | | { |
| | | unsigned x, y, t; |
| | | |
| | | // Load the array and pack it into x and y. |
| | | |
| | | x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m]; |
| | | y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m]; |
| | | |
| | |
| | | y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F); |
| | | x = t; |
| | | |
| | | B[0] = x >> 24; B[n] = x >> 16; B[2 * n] = x >> 8; B[3 * n] = x; |
| | | B[4 * n] = y >> 24; B[5 * n] = y >> 16; B[6 * n] = y >> 8; B[7 * n] = y; |
| | | B[7 * n] = reverse_byte(x >> 24); B[6 * n] = reverse_byte(x >> 16); B[5 * n] = reverse_byte(x >> 8); B[4 * n] = reverse_byte(x); |
| | | B[3 * n] = reverse_byte(y >> 24); B[2 * n] = reverse_byte(y >> 16); B[1 * n] = reverse_byte(y >> 8); B[0 * n] = reverse_byte(y); |
| | | } |
| | | |
| | | void transpose_bin(char *A, char *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += 8) { |
| | | int j; |
| | | for (j = 0; j < m - 8; j += 8) { |
| | | int a_index = i*lda + j; |
| | | int b_index = j*ldb + i; |
| | | //transpose_8x8_bits_my(&A[a_index/8], &B[b_index/8], lda/8, ldb/8); |
| | | transpose8rS32_reversed_diagonale(&A[a_index / 8], lda / 8, ldb / 8, &B[b_index / 8]); |
| | | } |
| | | for (; j < m; ++j) { |
| | | if (get_bit(A, i*lda + j)) set_bit(B, j*ldb + i); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | |
| | | |
| | | size_t i; |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 float_zero256 = _mm256_set1_ps(0.00001); |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | //mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&src[i])); |
| | | __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS); |
| | | uint32_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1 |
| | | |
| | | dst[i / 8] = mask; |
| | | } |