| | |
| | | return net; |
| | | } |
| | | |
| | | void forward_network(network net, double *input) |
| | | void forward_network(network net, float *input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, double step, double momentum, double decay) |
| | | void update_network(network net, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | double *get_network_output_layer(network net, int i) |
| | | float *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | } |
| | | return 0; |
| | | } |
| | | double *get_network_output(network net) |
| | | float *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | } |
| | | |
| | | double *get_network_delta_layer(network net, int i) |
| | | float *get_network_delta_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | return 0; |
| | | } |
| | | |
| | | double *get_network_delta(network net) |
| | | float *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | double calculate_error_network(network net, double *truth) |
| | | float calculate_error_network(network net, float *truth) |
| | | { |
| | | double sum = 0; |
| | | double *delta = get_network_delta(net); |
| | | double *out = get_network_output(net); |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i, k = get_network_output_size(net); |
| | | for(i = 0; i < k; ++i){ |
| | | delta[i] = truth[i] - out[i]; |
| | |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | double *out = get_network_output(net); |
| | | float *out = get_network_output(net); |
| | | int k = get_network_output_size(net); |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | double backward_network(network net, double *input, double *truth) |
| | | float backward_network(network net, float *input, float *truth) |
| | | { |
| | | double error = calculate_error_network(net, truth); |
| | | float error = calculate_error_network(net, truth); |
| | | int i; |
| | | double *prev_input; |
| | | double *prev_delta; |
| | | float *prev_input; |
| | | float *prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev_input = input; |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(layer); |
| | | //learn_convolutional_layer(layer); |
| | | //if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | |
| | | return error; |
| | | } |
| | | |
| | | double train_network_datum(network net, double *x, double *y, double step, double momentum, double decay) |
| | | float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
| | | { |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | double error = backward_network(net, x, y); |
| | | float error = backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | |
| | | double train_network_sgd(network net, data d, int n, double step, double momentum,double decay) |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | double error = 0; |
| | | float error = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
| | | //if((i+1)%10 == 0){ |
| | | // printf("%d: %f\n", (i+1), (double)correct/(i+1)); |
| | | // printf("%d: %f\n", (i+1), (float)correct/(i+1)); |
| | | //} |
| | | } |
| | | return error/n; |
| | | } |
| | | double train_network_batch(network net, data d, int n, double step, double momentum,double decay) |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | double *x = d.X.vals[index]; |
| | | double *y = d.y.vals[index]; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | backward_network(net, x, y); |
| | | correct += (y[class]?1:0); |
| | | } |
| | | update_network(net, step, momentum, decay); |
| | | return (double)correct/n; |
| | | return (float)correct/n; |
| | | |
| | | } |
| | | |
| | | |
| | | void train_network(network net, data d, double step, double momentum, double decay) |
| | | void train_network(network net, data d, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | printf("Accuracy: %f\n", (double)correct/d.X.rows); |
| | | printf("Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | |
| | | } |
| | | } |
| | | |
| | | double *network_predict(network net, double *input) |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | forward_network(net, input); |
| | | double *out = get_network_output(net); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | | |
| | |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | for(i = 0; i < test.X.rows; ++i){ |
| | | double *out = network_predict(net, test.X.vals[i]); |
| | | float *out = network_predict(net, test.X.vals[i]); |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i][j] = out[j]; |
| | | } |
| | |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | double *output = 0; |
| | | float *output = 0; |
| | | int n = 0; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | output = layer.output; |
| | | n = layer.inputs; |
| | | } |
| | | double mean = mean_array(output, n); |
| | | double vari = variance_array(output, n); |
| | | float mean = mean_array(output, n); |
| | | float vari = variance_array(output, n); |
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
| | | if(n > 100) n = 100; |
| | | for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
| | |
| | | } |
| | | } |
| | | |
| | | double network_accuracy(network net, data d) |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | double acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |