Edmond Yoo
2018-09-16 f856f6e7f1fd0a11244527b266c1fd47334fb5f3
README.md
@@ -1,374 +1,94 @@
# Yolo-v2 Windows and Linux version
1. [How to use](#how-to-use)
2. [How to compile on Linux](#how-to-compile-on-linux)
3. [How to compile on Windows](#how-to-compile-on-windows)
4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
5. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
6. [When should I stop training](#when-should-i-stop-training)
7. [How to improve object detection](#how-to-improve-object-detection)
8. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
9. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
# Magic: The Gathering Card Detection Model
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
This is a fork of [Yolo-v3 and Yolo-v2 for Windows and Linux by AlexeyAB](https://github.com/AlexeyAB/darknet#how-to-compile-on-linux) for creating a custom model for [My MTG card detection project](https://github.com/hj3yoo/MTGCardDetector).
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
## Day ~0: Sep 6th, 2018
---------------------
Uploading all the progresses on the model training for the last few days.
# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
First batch of model training is completed, where I used ~40,000 generated images of MTG cards laid out in one of the pre-defined pattern.
This repository is forked from Linux-version: https://github.com/pjreddie/darknet
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_training_set_example_1.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_training_set_example_2.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_training_set_example_3.jpg" width="360">
More details: http://pjreddie.com/darknet/yolo/
After 5000 training epochs, the model got 88% validation accuracy on the generated test set.
This repository supports:
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_1.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_2.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_3.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_4.jpg" width="360">
* both Windows and Linux
* both OpenCV 3.x and OpenCV 2.4.13
* both cuDNN 5 and cuDNN 6
* CUDA >= 7.5
* also create SO-library on Linux and DLL-library on Windows
However, there are some blind spots on the model, notably:
##### Requires:
* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
* **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
  - OpenCV allows to show image or video detection in the window and store result to file: test_dnn_out.avi
- Fails to spot some of the obscured cards, where only a fraction of them are shown.
- Fairly fragile against any glaring or light variations.
- Cannot detect any skewed cards.
##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
* `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
* `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
* `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
* `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
Example of bad detections:
Put it near compiled: darknet.exe
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_5.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_6.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/0_detection_result_7.jpg" width="360">
You can get cfg-files by path: `darknet/cfg/`
The second and third problems should easily be solved by further augmenting the dataset with random lighting and image skew. I'll have to think more about the first problem, though.
##### Examples of results:
## Sept 7th, 2018
-----------------------
[![Everything Is AWESOME](http://img.youtube.com/vi/VOC3huqHrss/0.jpg)](https://www.youtube.com/watch?v=VOC3huqHrss "Everything Is AWESOME")
Added several image augmentation techniques to apply to the training set: noise, dropout, light variation, and glaring:
Others: https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_augmented_set_example_1.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_augmented_set_example_2.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_augmented_set_example_3.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_augmented_set_example_4.jpg" width="360">
### How to use:
Currently trying to generate enough images to start model training. Hopefully this helps.
##### Example of usage in cmd-files from `build\darknet\x64\`:
Recompiled darknet with OpenCV and CUDNN installed, and recalculated anchors.
* `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
* `darknet_coco_9000.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the image: dog.jpg
* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4
-----------------------
##### How to use on the command line:
* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
* Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
I've ran a quick training with tiny_yolo configuration with new training data, and Voila! The model performs significantly better than the last iteration, even against some hard images with glaring & skew! The first prediction model can't detect anything from these new test images, so this is a huge improvement to the model :)
##### For using network video-camera mjpeg-stream with any Android smartphone:
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_detection_result_1.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_decision_result_2.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_decision_result_3.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_decision_result_4.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_decision_result_5.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_decision_result_6.jpg" width="360">
1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/1_learning_curve.jpg" width="640">
The video demo can be found here: https://www.youtube.com/watch?v=kFE_k-mWo2A&feature=youtu.be
    * Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
    * IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
3. Start Smart WebCam on your phone
4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
## Sept 10th, 2018
-----------------------
I've been training a new model with a full YOLOv3 configuration (previous one used Tiny YOLOv3), and it's been taking a lot more resources:
* 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/2_learning_curve.jpg" width="640">
### How to compile on Linux:
The author of darknet did mention that full network will take significantly more training effort, so I'll just have to wait. At this rate, it should reach 50k epoch in about a week :/
Just do `make` in the darknet directory.
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
* `GPU=1` to build with CUDA to accelerate by using GPU
* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU
* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
* `DEBUG=1` to bould debug version of Yolo
* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
## Sept 13th, 2018
----------------------
### How to compile on Windows:
The training for full YOLOv3 model has turned sour - the loss saturated around 0.45, and didn't seem like it would improve in any reasonable amount of time.
1. If you have **MSVS 2015, CUDA 8.0 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/3_learning_curve.jpg" width="640">
    1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
As expected, the performance of the model with 0.45 loss was fairly bad. Not to mention that it's quite slower, too. I've decided to continue with tiny YOLOv3 weights. I tried to train it further, but it was already saturated, and was the best it could get.
2. If you have other version of **CUDA (not 8.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
---------------------
3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
Bad news, I couldn't find any repo that has python wrapper for darknet to pursue this project further. There is a [python example](https://github.com/AlexeyAB/darknet/blob/master/darknet.py) in the original repo of this fork, but [it doesn't support video input](https://github.com/AlexeyAB/darknet/issues/955). Other darknet repos are in the same situation.
4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
I suppose there is a poor man's alternative - feed individual frames from the video into the detection script for image. I'll have to give it a shot.
    4.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
    4.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
5. If you have other version of OpenCV 2.4.x (not 3.x) then you also should change lines like `#pragma comment(lib, "opencv_core2413.lib")` in the file `\src\detector.c`
6. If you want to build with CUDNN to speed up then:
    * download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
    * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
    * open `\darknet.sln` -> (right click on project) -> properties  -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
## Sept 14th, 2018
--------------------
### How to compile (custom):
Thankfully, OpenCV had an implementation for DNN, which supports YOLO as well. They have done quite an amazing job, and the speed isn't too bad, either. I can score about 20~25fps on my tiny YOLO, without using GPU.
Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 3.0
Then add to your created project:
- (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here:
## Sept 15th, 2018
--------------------
`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- add to project all .c & .cu files from `\src`
- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here:
I tried to do an alternate approach - instead of making model identify cards as annonymous, train the model for EVERY single card. As you may imagine, this isn't sustainable for 10000+ different cards that exists in MTG, but I thought it would be reasonable for classifying 10 different cards.
`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
-  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here:
Result? Suprisingly effective.
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_1.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_decision_result_2.jpg" width="360"><img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_3.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_decision_result_4.jpg" width="360">
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- open file: `\src\detector.c` and check lines `#pragma` and `#inclue` for OpenCV.
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
    * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
    * `cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
    * For OpenCV 3.0: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin`
    * For OpenCV 2.4.13: `opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` from  `C:\opencv_2.4.9\opencv\build\x64\vc14\bin`
## How to train (Pascal VOC Data):
1. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`:
    * http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
    * http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
    * http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
    2.1 Download file `voc_label.py` to dir `build\darknet\x64\data\voc`: http://pjreddie.com/media/files/voc_label.py
3. Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
4. Run command: `python build\darknet\x64\data\voc\voc_label.py` (to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt)
5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
If required change pathes in the file `build\darknet\x64\data\voc.data`
More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc
## How to train with multi-GPU:
1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg yolo-voc_1000.weights -gpus 0,1,2,3`
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
## How to train (to detect your custom objects):
1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and:
  * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
  * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
  * change line `classes=20` to your number of objects
  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
  For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
  ```
  [convolutional]
  filters=35
  [region]
  classes=2
  ```
2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
  ```
  classes= 2
  train  = data/train.txt
  valid  = data/test.txt
  names = data/obj.names
  backup = backup/
  ```
4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
  Where:
  * `<object-class>` - integer number of object from `0` to `(classes-1)`
  * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0
  * for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>`
  * atention: `<x> <y>` - are center of rectangle (are not top-left corner)
  For example for `img1.jpg` you should create `img1.txt` containing:
  ```
  1 0.716797 0.395833 0.216406 0.147222
  0 0.687109 0.379167 0.255469 0.158333
  1 0.420312 0.395833 0.140625 0.166667
  ```
6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
  ```
  data/obj/img1.jpg
  data/obj/img2.jpg
  data/obj/img3.jpg
  ```
7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations until 1000 iterations has been reached, and after for each 1000 iterations)
9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
 * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
 * Also you can get result earlier than all 45000 iterations.
## When should I stop training:
Usually sufficient 2000 iterations for each class(object). But for a more precise definition when you should stop training, use the following manual:
1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.060730 avg**:
  > Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000,  count: 8
  > Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000,  count: 8
  >
  > **9002**: 0.211667, **0.060730 avg**, 0.001000 rate, 3.868000 seconds, 576128 images
  > Loaded: 0.000000 seconds
  * **9002** - iteration number (number of batch)
  * **0.060730 avg** - average loss (error) - **the lower, the better**
  When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training.
2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect ojbects on any others images. You should get weights from **Early Stopping Point**:
![Overfitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png)
To get weights from Early Stopping Point:
  2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
  2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
* `darknet.exe detector recall data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
* `darknet.exe detector recall data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
* `darknet.exe detector recall data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights`
And comapre last output lines for each weights (7000, 8000, 9000):
> 7586 7612 7689 RPs/Img: 68.23 **IOU: 77.86%** Recall:99.00%
* **IOU** - the bigger, the better (says about accuracy) - **better to use**
* **Recall** - the bigger, the better (says about accuracy) - actually Yolo calculates true positives, so it shouldn't be used
For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
### Custom object detection:
Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
|---|---|
## How to improve object detection:
1. Before training:
  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link]https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L244)
  * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
2. After training - for detection:
  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4)
    * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
    * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L3)
## How to mark bounded boxes of objects and create annotation files:
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2
## How to use Yolo as DLL
1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
    * You should have installed **CUDA 8.0**
    * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
2. To use Yolo as DLL-file in your C++ console application - open in MSVS2015 file `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
    * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
    * or you can run from MSVS2015 (before this - you should copy 2 files `yolo-voc.cfg` and `yolo-voc.weights` to the directory `build\darknet\` )
    * after launching your console application and entering the image file name - you will see info for each object:
    `<obj_id> <left_x> <top_y> <width> <height> <probability>`
    * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
    * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
```
class Detector {
public:
   Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
   ~Detector();
   std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
   std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
   static image_t load_image(std::string image_filename);
   static void free_image(image_t m);
#ifdef OPENCV
   std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
#endif
};
```
They're of course slightly worse than annonymous detection (notice how I used white background, too) and impractical for any large number of cardbase, but it was an interesting approach.