| | |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+1; |
| | | int elems = 4+classes; |
| | | int j; |
| | | int r, c; |
| | | float amount[AMNT] = {0}; |
| | | for(r = 0; r < side*side; ++r){ |
| | | float val = box[r*elems]; |
| | | for(j = 0; j < AMNT; ++j){ |
| | | if(val > amount[j]) { |
| | | float swap = val; |
| | | val = amount[j]; |
| | | amount[j] = swap; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[AMNT-1]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | //printf("%d\n", j); |
| | | //printf("Prob: %f\n", box[j]); |
| | | if(box[j] >= smallest){ |
| | | int class = max_index(box+j+1, classes); |
| | | int z; |
| | | for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+1+z], class_names[z]); |
| | | printf("%f %s\n", box[j+1+class], class_names[class]); |
| | | int class = max_index(box+j, classes); |
| | | if(box[j+class] > .02 || 1){ |
| | | //int z; |
| | | //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]); |
| | | printf("%f %s\n", box[j+class], class_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | int d = im.w/side; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*im.h; |
| | | int w = box[j+4]*im.w; |
| | | int y = r*d+box[j]*d; |
| | | int x = c*d+box[j+1]*d; |
| | | int h = box[j+2]*im.h; |
| | | int w = box[j+3]*im.w; |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); |
| | | } |
| | | } |
| | |
| | | data train, buffer; |
| | | int im_dim = 512; |
| | | int jitter = 64; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | int classes = 21; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]); |
| | |
| | | net.seen += imgs; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%800==0){ |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int num_output = 1225; |
| | | int im_size = 448; |
| | | int classes = 20; |
| | | int classes = 21; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += classes+4+1){ |
| | | for(k = 0; k < pred.cols; k += classes+4){ |
| | | |
| | | /* |
| | | int z; |
| | |
| | | printf("\n"); |
| | | */ |
| | | |
| | | float p = pred.vals[j][k]; |
| | | //if (pred.vals[j][k] > .001){ |
| | | for(class = 0; class < classes; ++class){ |
| | | int index = (k)/(classes+4+1); |
| | | for(class = 0; class < classes-1; ++class){ |
| | | int index = (k)/(classes+4); |
| | | int r = index/7; |
| | | int c = index%7; |
| | | float y = (r + pred.vals[j][k+1+classes])/7.; |
| | | float x = (c + pred.vals[j][k+2+classes])/7.; |
| | | float h = pred.vals[j][k+3+classes]; |
| | | float w = pred.vals[j][k+4+classes]; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, p*pred.vals[j][k+class+1], y, x, h, w); |
| | | float y = (r + pred.vals[j][k+0+classes])/7.; |
| | | float x = (c + pred.vals[j][k+1+classes])/7.; |
| | | float h = pred.vals[j][k+2+classes]; |
| | | float w = pred.vals[j][k+3+classes]; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w); |
| | | } |
| | | //} |
| | | } |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int im_size = 224; |
| | | int im_size = 448; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |