| | |
| | | import numpy as np |
| | | import os |
| | | import sys |
| | | from operator import itemgetter |
| | | |
| | | |
| | | # Disclaimer: majority of the basic framework in this file is modified from the following tutorial: |
| | |
| | | |
| | | |
| | | # Remove the bounding boxes with low confidence using non-maxima suppression |
| | | def postprocess(frame, outs, classes, thresh_conf, thresh_nms): |
| | | def post_process(frame, outs, thresh_conf, thresh_nms): |
| | | frame_height = frame.shape[0] |
| | | frame_width = frame.shape[1] |
| | | |
| | |
| | | confidences.append(float(confidence)) |
| | | boxes.append([left, top, width, height]) |
| | | |
| | | # Perform non maximum suppression to eliminate redundant overlapping boxes with |
| | | # lower confidences. |
| | | indices = cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms) |
| | | for i in indices: |
| | | i = i[0] |
| | | box = boxes[i] |
| | | left = box[0] |
| | | top = box[1] |
| | | width = box[2] |
| | | height = box[3] |
| | | draw_pred(frame, class_ids[i], classes, confidences[i], left, top, left + width, top + height) |
| | | # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences. |
| | | indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)] |
| | | |
| | | ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices] |
| | | return ret |
| | | |
| | | |
| | | # Draw the predicted bounding box |
| | |
| | | cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
| | | |
| | | |
| | | def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None): |
| | | def remove_glare(img): |
| | | img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
| | | _, s, v = cv2.split(img_hsv) |
| | | non_sat = (s < 32) * 255 # Find all pixels that are not very saturated |
| | | |
| | | # Slightly decrease the area of the non-satuared pixels by a erosion operation. |
| | | disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) |
| | | non_sat = cv2.erode(non_sat.astype(np.uint8), disk) |
| | | |
| | | # Set all brightness values, where the pixels are still saturated to 0. |
| | | v[non_sat == 0] = 0 |
| | | # filter out very bright pixels. |
| | | glare = (v > 240) * 255 |
| | | |
| | | # Slightly increase the area for each pixel |
| | | glare = cv2.dilate(glare.astype(np.uint8), disk) |
| | | #glare = cv2.dilate(glare.astype(np.uint8), disk); |
| | | |
| | | #corrected = cv2.inpaint(img, glare, 7, cv2.INPAINT_TELEA) |
| | | glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200 |
| | | glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR) |
| | | corrected = np.where(glare, glare_reduced, img) |
| | | return corrected |
| | | |
| | | |
| | | def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None): |
| | | img_copy = img.copy() |
| | | # Create a 4D blob from a frame. |
| | | blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) |
| | | |
| | |
| | | outs = net.forward(get_outputs_names(net)) |
| | | |
| | | # Remove the bounding boxes with low confidence |
| | | postprocess(img, outs, classes, thresh_conf, thresh_nms) |
| | | obj_list = post_process(img, outs, thresh_conf, thresh_nms) |
| | | for obj in obj_list: |
| | | class_id, confidence, box = obj |
| | | left, top, width, height = box |
| | | draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height) |
| | | |
| | | # Put efficiency information. The function getPerfProfile returns the |
| | | # overall time for inference(t) and the timings for each of the layers(in layersTimes) |
| | |
| | | |
| | | if out_path is not None: |
| | | cv2.imwrite(out_path, img.astype(np.uint8)) |
| | | if display: |
| | | no_glare = remove_glare(img_copy) |
| | | img_concat = np.concatenate((img, no_glare), axis=1) |
| | | cv2.imshow('result', img_concat) |
| | | |
| | | ''' |
| | | for i in range(len(obj_list)): |
| | | class_id, confidence, box = obj_list[i] |
| | | left, top, width, height = box |
| | | img_snip = img[max(0, top):min(img.shape[0], top + height), max(0, left):min(img.shape[1], left + width)] |
| | | #cv2.imshow('feature#%d' % i, img_snip) |
| | | img_hsv = cv2.cvtColor(img_snip, cv2.COLOR_BGR2HSV) |
| | | h, s, v = cv2.split(img_hsv) |
| | | #h = cv2.cvtColor(h, cv2.COLOR_GRAY2BGR) |
| | | s = cv2.cvtColor(s, cv2.COLOR_GRAY2BGR) |
| | | v = cv2.cvtColor(v, cv2.COLOR_GRAY2BGR) |
| | | img_concat = np.concatenate((img_snip, s, v), axis=1) |
| | | cv2.imshow('feature#%d - hsv' % i, img_concat) |
| | | ''' |
| | | cv2.waitKey(0) |
| | | cv2.destroyAllWindows() |
| | | |
| | | return obj_list |
| | | |
| | | |
| | | def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None): |
| | | def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None): |
| | | if out_path is not None: |
| | | vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30, |
| | | (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), |
| | | round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))) |
| | | max_num_obj = 0 |
| | | while True: |
| | | ret, frame = capture.read() |
| | | if not ret: |
| | |
| | | print("End of video. Press any key to exit") |
| | | cv2.waitKey(0) |
| | | break |
| | | ''' |
| | | # Create a 4D blob from a frame. |
| | | blob = cv2.dnn.blobFromImage(frame, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) |
| | | |
| | | # Sets the input to the network |
| | | net.setInput(blob) |
| | | |
| | | # Runs the forward pass to get output of the output layers |
| | | outs = net.forward(get_outputs_names(net)) |
| | | |
| | | # Remove the bounding boxes with low confidence |
| | | postprocess(frame, outs, classes, thresh_conf, thresh_nms) |
| | | |
| | | # Put efficiency information. The function getPerfProfile returns the |
| | | # overall time for inference(t) and the timings for each of the layers(in layersTimes) |
| | | t, _ = net.getPerfProfile() |
| | | label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) |
| | | cv2.putText(frame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
| | | ''' |
| | | detect_frame(net, classes, frame, |
| | | thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim, out_path=None) |
| | | cv2.imshow('result', frame) |
| | | img = frame.copy() |
| | | obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim, |
| | | display=False, out_path=None) |
| | | max_num_obj = max(max_num_obj, len(obj_list)) |
| | | if display: |
| | | no_glare = remove_glare(img) |
| | | img_concat = np.concatenate((frame, no_glare), axis=1) |
| | | cv2.imshow('result', img_concat) |
| | | ''' |
| | | for i in range(len(obj_list)): |
| | | class_id, confidence, box = obj_list[i] |
| | | left, top, width, height = box |
| | | img_snip = img[max(0, top):min(img.shape[0], top + height), |
| | | max(0, left):min(img.shape[1], left + width)] |
| | | # cv2.imshow('feature#%d' % i, img_snip) |
| | | img_hsv = cv2.cvtColor(img_snip, cv2.COLOR_BGR2HSV) |
| | | h, s, v = cv2.split(img_hsv) |
| | | # h = cv2.cvtColor(h, cv2.COLOR_GRAY2BGR) |
| | | s = cv2.cvtColor(s, cv2.COLOR_GRAY2BGR) |
| | | v = cv2.cvtColor(v, cv2.COLOR_GRAY2BGR) |
| | | img_concat = np.concatenate((img_snip, s, v), axis=1) |
| | | cv2.imshow('feature#%d - hsv' % i, img_concat) |
| | | for i in range(len(obj_list), max_num_obj): |
| | | cv2.imshow('feature#%d - hsv' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | ''' |
| | | #if len(obj_list) > 0: |
| | | #cv2.waitKey(0) |
| | | if out_path is not None: |
| | | vid_writer.write(frame.astype(np.uint8)) |
| | | cv2.waitKey(1) |
| | |
| | | if out_path is not None: |
| | | vid_writer.release() |
| | | cv2.destroyAllWindows() |
| | | pass |
| | | |
| | | |
| | | def main(): |
| | | # Specify paths for all necessary files |
| | | test_path = '../data/test1.mp4' |
| | | test_path = os.path.abspath('../data/test18.jpg') |
| | | weight_path = 'weights/second_general/tiny_yolo_final.weights' |
| | | cfg_path = 'cfg/tiny_yolo.cfg' |
| | | class_path = "data/obj.names" |
| | | out_dir = 'out' |
| | | if not os.path.isfile(test_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(weight_path): |
| | | print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(cfg_path): |
| | | print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(class_path): |
| | | print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | |
| | | # Setup |
| | | # Read class names from text file |
| | |
| | | classes = [line.strip() for line in f.readlines()] |
| | | # Load up the neural net using the config and weights |
| | | net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) |
| | | #net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) |
| | | #net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) |
| | | net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) |
| | | net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) |
| | | |
| | | # Save the detection result if out_dir is provided |
| | | if out_dir is None or out_dir == '': |
| | |
| | | out_path = out_dir + '/' + os.path.split(test_path)[1] |
| | | # Check if test file is image or video |
| | | test_ext = test_path[test_path.find('.') + 1:] |
| | | |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | img = cv2.imread(test_path) |
| | | detect_frame(net, classes, img, out_path=out_path) |