| | |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/core/core_c.h" |
| | | #include "opencv2/core/version.hpp" |
| | | |
| | | #ifndef CV_VERSION_EPOCH |
| | | #include "opencv2/videoio/videoio_c.h" |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION) |
| | | #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") |
| | | #else |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR) |
| | | #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") |
| | | #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") |
| | | #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | | static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | |
| | | //int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int init_w = net.w; |
| | | int init_h = net.h; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | |
| | | args.classes = classes; |
| | | args.jitter = jitter; |
| | | args.num_boxes = l.max_boxes; |
| | | args.small_object = l.small_object; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 8; |
| | | args.threads = 4;// 8; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | |
| | | int count = 0; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | if(l.random && count++%10 == 0){ |
| | | if(l.random && count++%10 == 0){ |
| | | printf("Resizing\n"); |
| | | int dim = (rand() % 10 + 10) * 32; |
| | | if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 |
| | | //int dim = (rand() % 10 + 10) * 32; |
| | | //if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | //int dim = (rand() % 4 + 16) * 32; |
| | | printf("%d\n", dim); |
| | | args.w = dim; |
| | |
| | | |
| | | i = get_current_batch(net); |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { |
| | | if (i % 100 == 0) { |
| | | #ifdef GPU |
| | | if(ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | #ifdef GPU |
| | |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | int class = j; |
| | | if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class], |
| | | int class_id = j; |
| | | if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | | } |
| | |
| | | int *map = 0; |
| | | if (mapf) map = read_map(mapf); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | float thresh = .005; |
| | | float nms = .45; |
| | | |
| | | int detection_count = 0; |
| | | |
| | | int nthreads = 4; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | |
| | | int h = val[t].h; |
| | | get_region_boxes(l, w, h, thresh, probs, boxes, 0, map); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
| | | |
| | | int x, y; |
| | | for (x = 0; x < (l.w*l.h*l.n); ++x) { |
| | | for (y = 0; y < classes; ++y) |
| | | { |
| | | if (probs[x][y]) ++detection_count; |
| | | } |
| | | } |
| | | |
| | | if (coco){ |
| | | print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | } else if (imagenet){ |
| | |
| | | fprintf(fp, "\n]\n"); |
| | | fclose(fp); |
| | | } |
| | | printf("\n detection_count = %d \n", detection_count); |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void validate_detector_recall(char *cfgfile, char *weightfile) |
| | | void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("data/voc.2007.test"); |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | |
| | | int m = plist->size; |
| | | int i=0; |
| | | |
| | | float thresh = .001; |
| | | float thresh = .001;// .001; // .2; |
| | | float iou_thresh = .5; |
| | | float nms = .4; |
| | | |
| | | int detection_count = 0, truth_count = 0; |
| | | |
| | | int total = 0; |
| | | int correct = 0; |
| | | int proposals = 0; |
| | |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | truth_count += num_labels; |
| | | for(k = 0; k < l.w*l.h*l.n; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < l.w*l.h*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
| | | float best_iou = 0; |
| | | for (k = 0; k < l.w*l.h*l.n; ++k) { |
| | | float iou = box_iou(boxes[k], t); |
| | | if (probs[k][0] > thresh && iou > best_iou) { |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | |
| | | free_image(orig); |
| | | free_image(sized); |
| | | } |
| | | printf("\n truth_count = %d \n", truth_count); |
| | | } |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | typedef struct { |
| | | box b; |
| | | float p; |
| | | int class_id; |
| | | int image_index; |
| | | int truth_flag; |
| | | int unique_truth_index; |
| | | } box_prob; |
| | | |
| | | int detections_comparator(const void *pa, const void *pb) |
| | | { |
| | | box_prob a = *(box_prob *)pa; |
| | | box_prob b = *(box_prob *)pb; |
| | | float diff = a.p - b.p; |
| | | if (diff < 0) return 1; |
| | | else if (diff > 0) return -1; |
| | | return 0; |
| | | } |
| | | |
| | | void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou) |
| | | { |
| | | int j; |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
| | | char *difficult_valid_images = option_find_str(options, "difficult", NULL); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | char *mapf = option_find_str(options, "map", 0); |
| | | int *map = 0; |
| | | if (mapf) map = read_map(mapf); |
| | | |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | char **paths_dif = NULL; |
| | | if (difficult_valid_images) { |
| | | list *plist_dif = get_paths(difficult_valid_images); |
| | | paths_dif = (char **)list_to_array(plist_dif); |
| | | } |
| | | |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int classes = l.classes; |
| | | |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int t; |
| | | |
| | | const float thresh = .005; |
| | | const float nms = .45; |
| | | const float iou_thresh = 0.5; |
| | | |
| | | int nthreads = 4; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | | image *buf = calloc(nthreads, sizeof(image)); |
| | | image *buf_resized = calloc(nthreads, sizeof(image)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); |
| | | |
| | | load_args args = { 0 }; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | //const float thresh_calc_avg_iou = 0.24; |
| | | float avg_iou = 0; |
| | | int tp_for_thresh = 0; |
| | | int fp_for_thresh = 0; |
| | | |
| | | box_prob *detections = calloc(1, sizeof(box_prob)); |
| | | int detections_count = 0; |
| | | int unique_truth_count = 0; |
| | | |
| | | int *truth_classes_count = calloc(classes, sizeof(int)); |
| | | |
| | | for (t = 0; t < nthreads; ++t) { |
| | | args.path = paths[i + t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | time_t start = time(0); |
| | | for (i = nthreads; i < m + nthreads; i += nthreads) { |
| | | fprintf(stderr, "%d\n", i); |
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | val_resized[t] = buf_resized[t]; |
| | | } |
| | | for (t = 0; t < nthreads && i + t < m; ++t) { |
| | | args.path = paths[i + t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
| | | const int image_index = i + t - nthreads; |
| | | char *path = paths[image_index]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | network_predict(net, X); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
| | | |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | int i, j; |
| | | for (j = 0; j < num_labels; ++j) { |
| | | truth_classes_count[truth[j].id]++; |
| | | } |
| | | |
| | | // difficult |
| | | box_label *truth_dif = NULL; |
| | | int num_labels_dif = 0; |
| | | if (paths_dif) |
| | | { |
| | | char *path_dif = paths_dif[image_index]; |
| | | |
| | | char labelpath_dif[4096]; |
| | | find_replace(path_dif, "images", "labels", labelpath_dif); |
| | | find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif); |
| | | find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif); |
| | | find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif); |
| | | find_replace(labelpath_dif, ".png", ".txt", labelpath_dif); |
| | | truth_dif = read_boxes(labelpath_dif, &num_labels_dif); |
| | | } |
| | | |
| | | for (i = 0; i < (l.w*l.h*l.n); ++i) { |
| | | |
| | | int class_id; |
| | | for (class_id = 0; class_id < classes; ++class_id) { |
| | | float prob = probs[i][class_id]; |
| | | if (prob > 0) { |
| | | detections_count++; |
| | | detections = realloc(detections, detections_count * sizeof(box_prob)); |
| | | detections[detections_count - 1].b = boxes[i]; |
| | | detections[detections_count - 1].p = prob; |
| | | detections[detections_count - 1].image_index = image_index; |
| | | detections[detections_count - 1].class_id = class_id; |
| | | detections[detections_count - 1].truth_flag = 0; |
| | | detections[detections_count - 1].unique_truth_index = -1; |
| | | |
| | | int truth_index = -1; |
| | | float max_iou = 0; |
| | | for (j = 0; j < num_labels; ++j) |
| | | { |
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
| | | //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", |
| | | // box_iou(boxes[i], t), prob, class_id, truth[j].id); |
| | | float current_iou = box_iou(boxes[i], t); |
| | | if (current_iou > iou_thresh && class_id == truth[j].id) { |
| | | if (current_iou > max_iou) { |
| | | max_iou = current_iou; |
| | | truth_index = unique_truth_count + j; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // best IoU |
| | | if (truth_index > -1) { |
| | | detections[detections_count - 1].truth_flag = 1; |
| | | detections[detections_count - 1].unique_truth_index = truth_index; |
| | | } |
| | | else { |
| | | // if object is difficult then remove detection |
| | | for (j = 0; j < num_labels_dif; ++j) { |
| | | box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; |
| | | float current_iou = box_iou(boxes[i], t); |
| | | if (current_iou > iou_thresh && class_id == truth_dif[j].id) { |
| | | --detections_count; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // calc avg IoU, true-positives, false-positives for required Threshold |
| | | if (prob > thresh_calc_avg_iou) { |
| | | if (truth_index > -1) { |
| | | avg_iou += max_iou; |
| | | ++tp_for_thresh; |
| | | } |
| | | else |
| | | fp_for_thresh++; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | unique_truth_count += num_labels; |
| | | |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | | } |
| | | |
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); |
| | | |
| | | |
| | | // SORT(detections) |
| | | qsort(detections, detections_count, sizeof(box_prob), detections_comparator); |
| | | |
| | | typedef struct { |
| | | double precision; |
| | | double recall; |
| | | int tp, fp, fn; |
| | | } pr_t; |
| | | |
| | | // for PR-curve |
| | | pr_t **pr = calloc(classes, sizeof(pr_t*)); |
| | | for (i = 0; i < classes; ++i) { |
| | | pr[i] = calloc(detections_count, sizeof(pr_t)); |
| | | } |
| | | printf("detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); |
| | | |
| | | |
| | | int *truth_flags = calloc(unique_truth_count, sizeof(int)); |
| | | |
| | | int rank; |
| | | for (rank = 0; rank < detections_count; ++rank) { |
| | | if(rank % 100 == 0) |
| | | printf(" rank = %d of ranks = %d \r", rank, detections_count); |
| | | |
| | | if (rank > 0) { |
| | | int class_id; |
| | | for (class_id = 0; class_id < classes; ++class_id) { |
| | | pr[class_id][rank].tp = pr[class_id][rank - 1].tp; |
| | | pr[class_id][rank].fp = pr[class_id][rank - 1].fp; |
| | | } |
| | | } |
| | | |
| | | box_prob d = detections[rank]; |
| | | // if (detected && isn't detected before) |
| | | if (d.truth_flag == 1) { |
| | | if (truth_flags[d.unique_truth_index] == 0) |
| | | { |
| | | truth_flags[d.unique_truth_index] = 1; |
| | | pr[d.class_id][rank].tp++; // true-positive |
| | | } |
| | | } |
| | | else { |
| | | pr[d.class_id][rank].fp++; // false-positive |
| | | } |
| | | |
| | | for (i = 0; i < classes; ++i) |
| | | { |
| | | const int tp = pr[i][rank].tp; |
| | | const int fp = pr[i][rank].fp; |
| | | const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive |
| | | pr[i][rank].fn = fn; |
| | | |
| | | if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); |
| | | else pr[i][rank].precision = 0; |
| | | |
| | | if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); |
| | | else pr[i][rank].recall = 0; |
| | | } |
| | | } |
| | | |
| | | free(truth_flags); |
| | | |
| | | |
| | | double mean_average_precision = 0; |
| | | |
| | | for (i = 0; i < classes; ++i) { |
| | | double avg_precision = 0; |
| | | int point; |
| | | for (point = 0; point < 11; ++point) { |
| | | double cur_recall = point * 0.1; |
| | | double cur_precision = 0; |
| | | for (rank = 0; rank < detections_count; ++rank) |
| | | { |
| | | if (pr[i][rank].recall >= cur_recall) { // > or >= |
| | | if (pr[i][rank].precision > cur_precision) { |
| | | cur_precision = pr[i][rank].precision; |
| | | } |
| | | } |
| | | } |
| | | //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); |
| | | |
| | | avg_precision += cur_precision; |
| | | } |
| | | avg_precision = avg_precision / 11; |
| | | printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100); |
| | | mean_average_precision += avg_precision; |
| | | } |
| | | |
| | | const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); |
| | | const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); |
| | | const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); |
| | | printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", |
| | | thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); |
| | | |
| | | printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", |
| | | thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); |
| | | |
| | | mean_average_precision = mean_average_precision / classes; |
| | | printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100); |
| | | |
| | | |
| | | for (i = 0; i < classes; ++i) { |
| | | free(pr[i]); |
| | | } |
| | | free(pr); |
| | | free(detections); |
| | | free(truth_classes_count); |
| | | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; |
| | | } else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | save_image(im, "predictions"); |
| | | show_image(im, "predictions"); |
| | | if (!dont_show) { |
| | | show_image(im, "predictions"); |
| | | } |
| | | |
| | | free_image(im); |
| | | free_image(sized); |
| | | free(boxes); |
| | | free_ptrs((void **)probs, l.w*l.h*l.n); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | cvDestroyAllWindows(); |
| | | if (!dont_show) { |
| | | cvWaitKey(0); |
| | | cvDestroyAllWindows(); |
| | | } |
| | | #endif |
| | | if (filename) break; |
| | | } |
| | |
| | | |
| | | void run_detector(int argc, char **argv) |
| | | { |
| | | int dont_show = find_arg(argc, argv, "-dont_show"); |
| | | int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .25); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | if(argc < 4){ |
| | |
| | | char *datacfg = argv[3]; |
| | | char *cfg = argv[4]; |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | | if(weights) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh); |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, dont_show); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix); |
| | | if(filename) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, |
| | | http_stream_port, dont_show); |
| | | } |
| | | } |