| | |
| | | #include "blas.h" |
| | | #include "math.h" |
| | | |
| | | #include <math.h> |
| | | #include <assert.h> |
| | | #include <float.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | void reorg_cpu(float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out) |
| | | { |
| | | int b,i,j,k; |
| | | int in_c = out_c/(stride*stride); |
| | | |
| | | //printf("\n out_c = %d, out_w = %d, out_h = %d, stride = %d, forward = %d \n", out_c, out_w, out_h, stride, forward); |
| | | //printf(" in_c = %d, in_w = %d, in_h = %d \n", in_c, out_w*stride, out_h*stride); |
| | | |
| | | for(b = 0; b < batch; ++b){ |
| | | for(k = 0; k < out_c; ++k){ |
| | | for(j = 0; j < out_h; ++j){ |
| | | for(i = 0; i < out_w; ++i){ |
| | | int in_index = i + out_w*(j + out_h*(k + out_c*b)); |
| | | int c2 = k % in_c; |
| | | int offset = k / in_c; |
| | | int w2 = i*stride + offset % stride; |
| | | int h2 = j*stride + offset / stride; |
| | | int out_index = w2 + out_w*stride*(h2 + out_h*stride*(c2 + in_c*b)); |
| | | if(forward) out[out_index] = x[in_index]; // used by default for forward (i.e. forward = 0) |
| | | else out[in_index] = x[out_index]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void flatten(float *x, int size, int layers, int batch, int forward) |
| | | { |
| | | float *swap = calloc(size*layers*batch, sizeof(float)); |
| | | int i,c,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(c = 0; c < layers; ++c){ |
| | | for(i = 0; i < size; ++i){ |
| | | int i1 = b*layers*size + c*size + i; |
| | | int i2 = b*layers*size + i*layers + c; |
| | | if (forward) swap[i2] = x[i1]; |
| | | else swap[i1] = x[i2]; |
| | | } |
| | | } |
| | | } |
| | | memcpy(x, swap, size*layers*batch*sizeof(float)); |
| | | free(swap); |
| | | } |
| | | |
| | | void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); |
| | | } |
| | | } |
| | | |
| | | void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | if(da) da[i] += dc[i] * s[i]; |
| | | if(db) db[i] += dc[i] * (1-s[i]); |
| | | ds[i] += dc[i] * (a[i] - b[i]); |
| | | } |
| | | } |
| | | |
| | | void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) |
| | | { |
| | | int stride = w1/w2; |
| | | int sample = w2/w1; |
| | | assert(stride == h1/h2); |
| | | assert(sample == h2/h1); |
| | | if(stride < 1) stride = 1; |
| | | if(sample < 1) sample = 1; |
| | | int minw = (w1 < w2) ? w1 : w2; |
| | | int minh = (h1 < h2) ? h1 : h2; |
| | | int minc = (c1 < c2) ? c1 : c2; |
| | | |
| | | int i,j,k,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(k = 0; k < minc; ++k){ |
| | | for(j = 0; j < minh; ++j){ |
| | | for(i = 0; i < minw; ++i){ |
| | | int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); |
| | | int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); |
| | | out[out_index] += add[add_index]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) |
| | | { |
| | |
| | | |
| | | void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) |
| | | { |
| | | float scale = 1./(batch * spatial); |
| | | float scale = 1./(batch * spatial - 1); |
| | | int i,j,k; |
| | | for(i = 0; i < filters; ++i){ |
| | | variance[i] = 0; |
| | |
| | | for(f = 0; f < filters; ++f){ |
| | | for(i = 0; i < spatial; ++i){ |
| | | int index = b*filters*spatial + f*spatial + i; |
| | | x[index] = (x[index] - mean[f])/(sqrt(variance[f])); |
| | | x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f); |
| | | } |
| | | } |
| | | } |
| | |
| | | for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; |
| | | } |
| | | |
| | | void fill_cpu(int N, float ALPHA, float *X, int INCX) |
| | | { |
| | | int i; |
| | | for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; |
| | | } |
| | | |
| | | void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) |
| | | { |
| | | int i, j; |
| | | int index = 0; |
| | | for(j = 0; j < B; ++j) { |
| | | for(i = 0; i < NX; ++i){ |
| | | if(X) X[j*NX + i] += OUT[index]; |
| | | ++index; |
| | | } |
| | | for(i = 0; i < NY; ++i){ |
| | | if(Y) Y[j*NY + i] += OUT[index]; |
| | | ++index; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) |
| | | { |
| | | int i, j; |
| | | int index = 0; |
| | | for(j = 0; j < B; ++j) { |
| | | for(i = 0; i < NX; ++i){ |
| | | OUT[index++] = X[j*NX + i]; |
| | | } |
| | | for(i = 0; i < NY; ++i){ |
| | | OUT[index++] = Y[j*NY + i]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) |
| | | { |
| | | int i; |
| | | for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; |
| | | } |
| | | |
| | | void mult_add_into_cpu(int N, float *X, float *Y, float *Z) |
| | | { |
| | | int i; |
| | | for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; |
| | | } |
| | | |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | float abs_val = fabs(diff); |
| | | if(abs_val < 1) { |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | else { |
| | | error[i] = 2*abs_val - 1; |
| | | delta[i] = (diff < 0) ? 1 : -1; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | error[i] = fabs(diff); |
| | | delta[i] = diff > 0 ? 1 : -1; |
| | | } |
| | | } |
| | | |
| | | void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | } |
| | | |
| | | float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) |
| | | { |
| | | int i; |
| | |
| | | return dot; |
| | | } |
| | | |
| | | void softmax(float *input, int n, float temp, float *output, int stride) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < n; ++i){ |
| | | if(input[i*stride] > largest) largest = input[i*stride]; |
| | | } |
| | | for(i = 0; i < n; ++i){ |
| | | float e = exp(input[i*stride]/temp - largest/temp); |
| | | sum += e; |
| | | output[i*stride] = e; |
| | | } |
| | | for(i = 0; i < n; ++i){ |
| | | output[i*stride] /= sum; |
| | | } |
| | | } |
| | | |
| | | |
| | | void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) |
| | | { |
| | | int g, b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(g = 0; g < groups; ++g){ |
| | | softmax(input + b*batch_offset + g*group_offset, n, temp, output + b*batch_offset + g*group_offset, stride); |
| | | } |
| | | } |
| | | } |
| | | |