Edmond Yoo
2018-10-11 fe96a9c1c545893efccb86e6b1fbfaa6a3a83b37
src/gemm.c
@@ -5,6 +5,8 @@
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <string.h>
#if defined(_OPENMP)
#include <omp.h>
@@ -304,13 +306,84 @@
//----------------------------
#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
void transpose_8x8_bits_my(unsigned char *A, unsigned char *B, int lda, int ldb)
{
    unsigned x, y, t;
    for (y = 0; y < 8; ++y) {
        for (x = 0; x < 8; ++x) {
            if (A[y * lda] & (1 << x)) B[x * ldb] |= 1 << y;
        }
    }
}
#define OSXSAVEFlag (1UL<<27)
#define AVXFlag     ((1UL<<28)|OSXSAVEFlag)
#define FMAFlag     ((1UL<<12)|AVXFlag|OSXSAVEFlag)
#define CLMULFlag   ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
#define VAESFlag    ((1UL<<25)|AVXFlag|OSXSAVEFlag)
unsigned char reverse_byte_1(char a)
{
    return ((a & 0x1) << 7) | ((a & 0x2) << 5) |
        ((a & 0x4) << 3) | ((a & 0x8) << 1) |
        ((a & 0x10) >> 1) | ((a & 0x20) >> 3) |
        ((a & 0x40) >> 5) | ((a & 0x80) >> 7);
}
unsigned char reverse_byte_2(unsigned char a)
{
    return ((a * 0x0802LU & 0x22110LU) | (a * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
}
static unsigned char lookup[16] = {
    0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
    0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf, };
unsigned char reverse_byte(unsigned char n) {
    // Reverse the top and bottom nibble then swap them.
    return (lookup[n & 0b1111] << 4) | lookup[n >> 4];
}
void transpose8rS32_reversed_diagonale(unsigned char* A, int m, int n, unsigned char* B)
{
    unsigned x, y, t;
    // Load the array and pack it into x and y.
    x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m];
    y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m];
    t = (x ^ (x >> 7)) & 0x00AA00AA;  x = x ^ t ^ (t << 7);
    t = (y ^ (y >> 7)) & 0x00AA00AA;  y = y ^ t ^ (t << 7);
    t = (x ^ (x >> 14)) & 0x0000CCCC;  x = x ^ t ^ (t << 14);
    t = (y ^ (y >> 14)) & 0x0000CCCC;  y = y ^ t ^ (t << 14);
    t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F);
    y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F);
    x = t;
    B[7 * n] = reverse_byte(x >> 24);  B[6 * n] = reverse_byte(x >> 16);  B[5 * n] = reverse_byte(x >> 8);  B[4 * n] = reverse_byte(x);
    B[3 * n] = reverse_byte(y >> 24);  B[2 * n] = reverse_byte(y >> 16);  B[1 * n] = reverse_byte(y >> 8);  B[0 * n] = reverse_byte(y);
}
void transpose_bin(char *A, char *B, const int n, const int m,
    const int lda, const int ldb, const int block_size)
{
    int i;
#pragma omp parallel for
    for (i = 0; i < n; i += 8) {
        int j;
        for (j = 0; j < m - 8; j += 8) {
            int a_index = i*lda + j;
            int b_index = j*ldb + i;
            //transpose_8x8_bits_my(&A[a_index/8], &B[b_index/8], lda/8, ldb/8);
            transpose8rS32_reversed_diagonale(&A[a_index / 8], lda / 8, ldb / 8, &B[b_index / 8]);
        }
        for (; j < m; ++j) {
            if (get_bit(A, i*lda + j)) set_bit(B, j*ldb + i);
        }
    }
}
//----------------------------
#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
#ifdef _WIN64
#include <intrin.h>
@@ -318,6 +391,24 @@
#include <immintrin.h>
#include <smmintrin.h>
#if defined(_MSC_VER) && _MSC_VER <= 1900
static inline __int32 _mm256_extract_epi64(__m256i a, const int index) {
    return a.m256i_i64[index];
}
static inline __int32 _mm256_extract_epi32(__m256i a, const int index) {
    return a.m256i_i32[index];
}
#endif
static inline float _castu32_f32(uint32_t a) {
    return *((float *)&a);
}
static inline float _mm256_extract_float32(__m256 a, const int index) {
    return a.m256_f32[index];
}
#else    // Linux GCC/Clang
#include <x86intrin.h>
#include <ammintrin.h>
@@ -325,6 +416,14 @@
#include <smmintrin.h>
#include <cpuid.h>
static inline float _castu32_f32(uint32_t a) {
    return *((float *)&a);
}
static inline float _mm256_extract_float32(__m256 a, const int index) {
    return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index));
}
void asm_cpuid(uint32_t* abcd, uint32_t eax)
{
    uint32_t ebx = 0, edx = 0, ecx = 0;
@@ -341,35 +440,121 @@
    abcd[2] = ecx;
    abcd[3] = edx;
}
#endif
int simd_detect_x86(unsigned int idFeature)
{
    uint32_t regs[4];    // EAX, EBX, ECX, EDX;
#ifdef _WIN32
    __cpuid(regs, 0);
    if (regs[0] > 1U) __cpuid(regs, 1);
//  Windows
#define cpuid(info, x)    __cpuidex(info, x, 0)
#else
    __get_cpuid(0, &regs[0], &regs[1], &regs[2], &regs[3]);
    if(regs[0] > 1U) __get_cpuid(1, &regs[0], &regs[1], &regs[2], &regs[3]);
//  GCC Intrinsics
void cpuid(int info[4], int InfoType) {
    __cpuid_count(InfoType, 0, info[0], info[1], info[2], info[3]);
}
#endif
    if ((regs[2] & idFeature) != idFeature)
        return 0;
    return 1;
//  Misc.
static int HW_MMX, HW_x64, HW_RDRAND, HW_BMI1, HW_BMI2, HW_ADX, HW_PREFETCHWT1;
static int HW_ABM;      // Advanced Bit Manipulation
//  SIMD: 128-bit
static int HW_SSE, HW_SSE2, HW_SSE3, HW_SSSE3, HW_SSE41, HW_SSE42, HW_SSE4a, HW_AES, HW_SHA;
//  SIMD: 256-bit
static int HW_AVX, HW_XOP, HW_FMA3, HW_FMA4, HW_AVX2;
//  SIMD: 512-bit
static int HW_AVX512F;    //  AVX512 Foundation
static int HW_AVX512CD;   //  AVX512 Conflict Detection
static int HW_AVX512PF;   //  AVX512 Prefetch
static int HW_AVX512ER;   //  AVX512 Exponential + Reciprocal
static int HW_AVX512VL;   //  AVX512 Vector Length Extensions
static int HW_AVX512BW;   //  AVX512 Byte + Word
static int HW_AVX512DQ;   //  AVX512 Doubleword + Quadword
static int HW_AVX512IFMA; //  AVX512 Integer 52-bit Fused Multiply-Add
static int HW_AVX512VBMI; //  AVX512 Vector Byte Manipulation Instructions
// https://stackoverflow.com/questions/6121792/how-to-check-if-a-cpu-supports-the-sse3-instruction-set
void check_cpu_features(void) {
    int info[4];
    cpuid(info, 0);
    int nIds = info[0];
    cpuid(info, 0x80000000);
    unsigned nExIds = info[0];
    //  Detect Features
    if (nIds >= 0x00000001) {
        cpuid(info, 0x00000001);
        HW_MMX = (info[3] & ((int)1 << 23)) != 0;
        HW_SSE = (info[3] & ((int)1 << 25)) != 0;
        HW_SSE2 = (info[3] & ((int)1 << 26)) != 0;
        HW_SSE3 = (info[2] & ((int)1 << 0)) != 0;
        HW_SSSE3 = (info[2] & ((int)1 << 9)) != 0;
        HW_SSE41 = (info[2] & ((int)1 << 19)) != 0;
        HW_SSE42 = (info[2] & ((int)1 << 20)) != 0;
        HW_AES = (info[2] & ((int)1 << 25)) != 0;
        HW_AVX = (info[2] & ((int)1 << 28)) != 0;
        HW_FMA3 = (info[2] & ((int)1 << 12)) != 0;
        HW_RDRAND = (info[2] & ((int)1 << 30)) != 0;
    }
    if (nIds >= 0x00000007) {
        cpuid(info, 0x00000007);
        HW_AVX2 = (info[1] & ((int)1 << 5)) != 0;
        HW_BMI1 = (info[1] & ((int)1 << 3)) != 0;
        HW_BMI2 = (info[1] & ((int)1 << 8)) != 0;
        HW_ADX = (info[1] & ((int)1 << 19)) != 0;
        HW_SHA = (info[1] & ((int)1 << 29)) != 0;
        HW_PREFETCHWT1 = (info[2] & ((int)1 << 0)) != 0;
        HW_AVX512F = (info[1] & ((int)1 << 16)) != 0;
        HW_AVX512CD = (info[1] & ((int)1 << 28)) != 0;
        HW_AVX512PF = (info[1] & ((int)1 << 26)) != 0;
        HW_AVX512ER = (info[1] & ((int)1 << 27)) != 0;
        HW_AVX512VL = (info[1] & ((int)1 << 31)) != 0;
        HW_AVX512BW = (info[1] & ((int)1 << 30)) != 0;
        HW_AVX512DQ = (info[1] & ((int)1 << 17)) != 0;
        HW_AVX512IFMA = (info[1] & ((int)1 << 21)) != 0;
        HW_AVX512VBMI = (info[2] & ((int)1 << 1)) != 0;
    }
    if (nExIds >= 0x80000001) {
        cpuid(info, 0x80000001);
        HW_x64 = (info[3] & ((int)1 << 29)) != 0;
        HW_ABM = (info[2] & ((int)1 << 5)) != 0;
        HW_SSE4a = (info[2] & ((int)1 << 6)) != 0;
        HW_FMA4 = (info[2] & ((int)1 << 16)) != 0;
        HW_XOP = (info[2] & ((int)1 << 11)) != 0;
    }
}
int is_fma_avx() {
int is_avx() {
    static int result = -1;
    if (result == -1) {
        result = simd_detect_x86(AVXFlag);
        check_cpu_features();
        result = HW_AVX;
        if (result == 1) printf(" Used AVX \n");
        else printf(" Not used AVX \n");
    }
    return result;
}
int is_fma_avx2() {
    static int result = -1;
    if (result == -1) {
        check_cpu_features();
        result = HW_FMA3 && HW_AVX2;
        if (result == 1) printf(" Used FMA & AVX2 \n");
        else printf(" Not used FMA & AVX2 \n");
    }
    return result;
}
// https://software.intel.com/sites/landingpage/IntrinsicsGuide
void gemm_nn(int M, int N, int K, float ALPHA,
    float *A, int lda,
@@ -377,7 +562,7 @@
    float *C, int ldc)
{
    int i, j, k;
    if (is_fma_avx() == 1) {    // AVX
    if (is_avx() == 1) {    // AVX
        for (i = 0; i < M; ++i) {
            for (k = 0; k < K; ++k) {
                float A_PART = ALPHA*A[i*lda + k];
@@ -429,6 +614,180 @@
}
void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride,
    float *weights, float *input, float *output)
{
    int out_h = (h + 2 * pad - ksize) / stride + 1;    // output_height=input_height for stride=1 and pad=1
    int out_w = (w + 2 * pad - ksize) / stride + 1;    // output_width=input_width for stride=1 and pad=1
    int i, f, j;
    int fil;
    // filter index
#pragma omp parallel for      // "omp parallel for" - automatic parallelization of loop by using OpenMP
    for (fil = 0; fil < n; ++fil) {
        int chan, y, x, f_y, f_x;
        // channel index
        for (chan = 0; chan < c; ++chan)
            // input - y
            for (y = 0; y < h; ++y)
                // input - x
                for (x = 0; x < w; ++x)
                {
                    int const output_index = fil*w*h + y*w + x;
                    int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize;
                    int const input_pre_index = chan*w*h;
                    float sum = 0;
                    // filter - y
                    for (f_y = 0; f_y < ksize; ++f_y)
                    {
                        int input_y = y + f_y - pad;
                        // filter - x
                        for (f_x = 0; f_x < ksize; ++f_x)
                        {
                            int input_x = x + f_x - pad;
                            if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
                            int input_index = input_pre_index + input_y*w + input_x;
                            int weights_index = weights_pre_index + f_y*ksize + f_x;
                            sum += input[input_index] * weights[weights_index];
                        }
                    }
                    // l.output[filters][width][height] +=
                    //        state.input[channels][width][height] *
                    //        l.weights[filters][channels][filter_width][filter_height];
                    output[output_index] += sum;
                }
    }
}
void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
    float *weights, float *input, float *output, float *mean)
{
    int out_h = (h + 2 * pad - ksize) / stride + 1;    // output_height=input_height for stride=1 and pad=1
    int out_w = (w + 2 * pad - ksize) / stride + 1;    // output_width=input_width for stride=1 and pad=1
    int i, f, j;
#if defined(_OPENMP)
    static int max_num_threads = 0;
    if (max_num_threads == 0) {
        max_num_threads = omp_get_max_threads();
        //omp_set_num_threads( max_num_threads / 2);
    }
#endif
    //convolution_2d_old(w, h, ksize, n, c, pad, stride, weights, input, output);
    __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
    for (i = 0; i < ksize*ksize*n*c; i+=8) {
        *((__m256*)&weights[i]) = _mm256_and_ps(*((__m256*)&weights[i]), _mm256_castsi256_ps(all256_sing1));
    }
    for (i = 0; i < w*h*c; i += 8) {
        //*((__m256*)&input[i]) = _mm256_and_ps(*((__m256*)&input[i]), _mm256_castsi256_ps(all256_sing1));
    }
    //__m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF);
    //all256_last_zero.m256i_i32[7] = 0;
    __m256i all256_last_zero =
        _mm256_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0);
    __m256i idx256 = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
    //__m256 all256_sing1 = _mm256_set1_ps(0x80000000);
    __m256 all256_one = _mm256_set1_ps(1);
    __m256i all256i_one = _mm256_set1_epi32(1);
    ///__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
    ///__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
    int fil;
    // filter index
#pragma omp parallel for      // "omp parallel for" - automatic parallelization of loop by using OpenMP
    for (fil = 0; fil < n; ++fil) {
        int chan, y, x, f_y, f_x;
        float cur_mean = fabs(mean[fil]);
        __m256 mean256 = _mm256_set1_ps(cur_mean);
        // channel index
        //for (chan = 0; chan < c; ++chan)
            // input - y
            for (y = 0; y < h; ++y)
                // input - x
                for (x = 0; x < w-8; x+=8)
                {
                    int const output_index = fil*w*h + y*w + x;
                    float sum = 0;
                    __m256 sum256 = _mm256_set1_ps(0);
                    for (chan = 0; chan < c; ++chan) {
                        int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize;
                        int const input_pre_index = chan*w*h;
                        // filter - y
                        for (f_y = 0; f_y < ksize; ++f_y)
                        {
                            int input_y = y + f_y - pad;
                            //__m256 in = *((__m256*)&input[input_pre_index + input_y*w]);
                            if (input_y < 0 || input_y >= h) continue;
                            //__m256 in = _mm256_loadu_ps(&input[input_pre_index + input_y*w + x - pad]);
                            // filter - x
                            for (f_x = 0; f_x < ksize; ++f_x)
                            {
                                int input_x = x + f_x - pad;
                                //if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
                                int input_index = input_pre_index + input_y*w + input_x;
                                int weights_index = weights_pre_index + f_y*ksize + f_x;
                                //if (input_y < 0 || input_y >= h) continue;
                                //sum += input[input_index] * weights[weights_index];
                                __m256 in = *((__m256*)&input[input_index]);
                                __m256 w = _mm256_set1_ps(weights[weights_index]);
                                //__m256 w_sign = _mm256_and_ps(w, _mm256_castsi256_ps(all256_sing1)); // check sign in 8 x 32-bit floats
                                __m256 xor256 = _mm256_xor_ps(w, in);
                                //printf("\n xor256_1 = %f, xor256_2 = %f \n", xor256.m256_f32[0], xor256.m256_f32[1]);
                                //printf("\n in = %f, w = %f, xor256 = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor256.m256_f32[0]);
                                //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor256);
                                //sum256 = xor256;
                                sum256 = _mm256_add_ps(xor256, sum256);
                                //printf("\n --- \n");
                                //printf("\n 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f \n", in.m256_f32[0], in.m256_f32[1], in.m256_f32[2], in.m256_f32[3], in.m256_f32[4], in.m256_f32[5], in.m256_f32[6], in.m256_f32[7]);
                                if (f_x < ksize-1) {
                                    //in = _mm256_permutevar8x32_ps(in, idx256);
                                    //in = _mm256_and_ps(in, _mm256_castsi256_ps(all256_last_zero));
                                }
                            }
                        }
                    }
                    // l.output[filters][width][height] +=
                    //        state.input[channels][width][height] *
                    //        l.weights[filters][channels][filter_width][filter_height];
                    //output[output_index] += sum;
                    sum256 = _mm256_mul_ps(sum256, mean256);
                    //printf("\n cur_mean = %f, sum256 = %f, sum256 = %f, in = %f \n",
                    //    cur_mean, sum256.m256_f32[0], sum256.m256_f32[1], input[input_pre_index]);
                    //__m256 out = *((__m256*)&output[output_index]);
                    //out = _mm256_add_ps(out, sum256);
                    //*((__m256*)&output[output_index]) = out;
                    *((__m256*)&output[output_index]) = sum256;
                    //_mm256_storeu_ps(&C[i*ldc + j], result256);
                }
    }
}
// http://graphics.stanford.edu/~seander/bithacks.html
// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
// https://arxiv.org/pdf/1611.07612.pdf
@@ -466,12 +825,18 @@
static inline int popcnt256_custom(__m256i n) {
    __m256i val = count256(n);
    return val.m256i_i64[0] +
    val.m256i_i64[1] +
    val.m256i_i64[2] +
    val.m256i_i64[3];
    //return val.m256i_i64[0] +
    //val.m256i_i64[1] +
    //val.m256i_i64[2] +
    //val.m256i_i64[3];
    return _mm256_extract_epi64(val, 0)
        + _mm256_extract_epi64(val, 1)
        + _mm256_extract_epi64(val, 2)
        + _mm256_extract_epi64(val, 3);
}
// 5x times faster than gemm()-float32
// further optimizations: do mean-mult only for the last layer
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
    unsigned char *A, int lda,
    unsigned char *B, int ldb,
@@ -483,7 +848,7 @@
    static int max_num_threads = 0;
    if (max_num_threads == 0) {
        max_num_threads = omp_get_max_threads();
        omp_set_num_threads(max_num_threads / 2);
        //omp_set_num_threads(max_num_threads / 2);
    }
#endif
@@ -514,10 +879,14 @@
            }
            // count of 1 bits
            count = count_sum.m256i_i64[0] +
                count_sum.m256i_i64[1] +
                count_sum.m256i_i64[2] +
                count_sum.m256i_i64[3];
            //count = count_sum.m256i_i64[0] +
            //    count_sum.m256i_i64[1] +
            //    count_sum.m256i_i64[2] +
             //   count_sum.m256i_i64[3];
            count = _mm256_extract_epi64(count_sum, 0)
                + _mm256_extract_epi64(count_sum, 1)
                + _mm256_extract_epi64(count_sum, 2)
                + _mm256_extract_epi64(count_sum, 3);
            int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
            count = count - f1;    // remove extra bits (from empty space for align only)
@@ -541,6 +910,121 @@
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom_transpose(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col, int ldb_align)
{
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1)
    {
#pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = pad; h < height_col - pad; ++h) {
                for (w = pad; w < width_col - pad - 4; w+=8) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    data_col[col_index + ldb_align * 0] = _mm256_extract_float32(src256, 0);// src256.m256_f32[0];
                    data_col[col_index + ldb_align * 1] = _mm256_extract_float32(src256, 1);// src256.m256_f32[1];
                    data_col[col_index + ldb_align * 2] = _mm256_extract_float32(src256, 2);// src256.m256_f32[2];
                    data_col[col_index + ldb_align * 3] = _mm256_extract_float32(src256, 3);// src256.m256_f32[3];
                    data_col[col_index + ldb_align * 4] = _mm256_extract_float32(src256, 4);// src256.m256_f32[4];
                    data_col[col_index + ldb_align * 5] = _mm256_extract_float32(src256, 5);// src256.m256_f32[5];
                    data_col[col_index + ldb_align * 6] = _mm256_extract_float32(src256, 6);// src256.m256_f32[6];
                    data_col[col_index + ldb_align * 7] = _mm256_extract_float32(src256, 7);// src256.m256_f32[7];
                    //_mm256_storeu_ps(&data_col[col_index], src256);
                }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                }
            }
            {
                w = 0;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                w = width_col - 1;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                h = 0;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
            {
                h = height_col - 1;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
        }
    }
    else {
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = 0; h < height_col; ++h) {
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h * stride;
                    int im_col = w_offset + w * stride;
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels,
                        im_row, im_col, c_im, pad);
                }
            }
        }
    }
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col)
@@ -552,7 +1036,7 @@
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1)
    if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
    {
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
@@ -566,7 +1050,7 @@
                    int col_index = (c * height_col + h) * width_col + w;
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    _mm256_storeu_ps(&data_col[col_index], src256);
                }
@@ -631,26 +1115,248 @@
    }
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom_align(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col, int bit_align)
{
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
    {
        int new_ldb = bit_align;
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = pad; h < height_col - pad; ++h) {
                for (w = pad; w < width_col - pad - 8; w += 8) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    _mm256_storeu_ps(&data_col[col_index], src256);
                }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                }
            }
            {
                w = 0;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                }
            }
            {
                w = width_col - 1;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                }
            }
            {
                h = 0;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                }
            }
            {
                h = height_col - 1;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                }
            }
        }
    }
    else {
        printf("\n Error: is no non-optimized version \n");
        //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin
        // float_to_bit(b, t_input, src_size);
        // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
    }
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom_bin(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col, int bit_align)
{
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
    {
        __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
        __m256 float_zero256 = _mm256_set1_ps(0.00);
        int new_ldb = bit_align;
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = pad; h < height_col - pad; ++h) {
                for (w = pad; w < width_col - pad - 8; w += 8) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //__m256i src256 = _mm256_loadu_si256((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
                    //uint16_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
                    //mask = ~mask;   // inverse mask,  (val >= 0) ? 1 : 0
                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS);
                    uint16_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1
                    uint16_t *dst_ptr = &((unsigned char*)data_col)[col_index / 8];
                    *dst_ptr |= (mask << (col_index % 8));
                }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    float val = data_im[im_col + width*(im_row + height*c_im)];
                    if(val > 0) set_bit(data_col, col_index);
                }
            }
            {
                w = 0;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                w = width_col - 1;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                h = 0;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                h = height_col - 1;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
        }
    }
    else {
        printf("\n Error: is no non-optimized version \n");
        //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin
        // float_to_bit(b, t_input, src_size);
        // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
    }
}
void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
{
    int i;
    int i = 0;
    if (a == LINEAR)
    {}
    else if (a == LEAKY)
    {
        __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
        __m256 all256_01 = _mm256_set1_ps(0.1F);
        if (is_fma_avx2()) {
            __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
            __m256 all256_01 = _mm256_set1_ps(0.1F);
        for (i = 0; i < n; i += 8) {
            //x[i] = (x[i]>0) ? x[i] : .1*x[i];
            for (i = 0; i < n - 8; i += 8) {
                //x[i] = (x[i]>0) ? x[i] : .1*x[i];
            __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i]));
            __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
                __m256 src256 = _mm256_loadu_ps(&x[i]);
                __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
            __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
                __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
            __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
            _mm256_storeu_ps((__m256 *)(&x[i]), result256);
                __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
                _mm256_storeu_ps(&x[i], result256);
            }
        }
        for (; i < n; ++i) {
@@ -671,14 +1377,18 @@
    size_t i;
    __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
    __m256 float_zero256 = _mm256_set1_ps(0.0);
    for (i = 0; i < size; i+=8)
    {
        __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
        __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
        //__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i]));
        //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats
        //uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
        ////mask = ~mask;   // inverse mask,  (val >= 0) ? 1 : 0
        uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1
        mask = ~mask;   // inverse mask,  (val >= 0) ? 1 : 0
        __m256 src256 = _mm256_loadu_ps((float *)(&src[i]));
        __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS);
        uint32_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1
        dst[i / 8] = mask;
    }
@@ -737,6 +1447,100 @@
}
void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c,
    int pad, int stride, int batch)
{
    int w_offset = -pad / 2;
    int h_offset = -pad / 2;
    int b, k;
    for (b = 0; b < batch; ++b) {
        #pragma omp parallel for
        for (k = 0; k < c; ++k) {
            int i, j, m, n;
            for (i = 0; i < out_h; ++i) {
                //for (j = 0; j < out_w; ++j) {
                j = 0;
                if(stride == 1 && is_avx() == 1) {
                    for (j = 0; j < out_w - 8 - (size - 1); j += 8) {
                        int out_index = j + out_w*(i + out_h*(k + c*b));
                        __m256 max256 = _mm256_set1_ps(-FLT_MAX);
                        for (n = 0; n < size; ++n) {
                            for (m = 0; m < size; ++m) {
                                int cur_h = h_offset + i*stride + n;
                                int cur_w = w_offset + j*stride + m;
                                int index = cur_w + w*(cur_h + h*(k + b*c));
                                int valid = (cur_h >= 0 && cur_h < h &&
                                    cur_w >= 0 && cur_w < w);
                                if (!valid) continue;
                                __m256 src256 = _mm256_loadu_ps(&src[index]);
                                max256 = _mm256_max_ps(src256, max256);
                            }
                        }
                        _mm256_storeu_ps(&dst[out_index], max256);
                    }
                }
                else if (size == 2 && stride == 2 && is_avx() == 1) {
                    for (j = 0; j < out_w - 4; j += 4) {
                        int out_index = j + out_w*(i + out_h*(k + c*b));
                        float max = -FLT_MAX;
                        int max_i = -1;
                        __m128 max128 = _mm_set1_ps(-FLT_MAX);
                        for (n = 0; n < size; ++n) {
                            //for (m = 0; m < size; ++m)
                            m = 0;
                            {
                                int cur_h = h_offset + i*stride + n;
                                int cur_w = w_offset + j*stride + m;
                                int index = cur_w + w*(cur_h + h*(k + b*c));
                                int valid = (cur_h >= 0 && cur_h < h &&
                                    cur_w >= 0 && cur_w < w);
                                if (!valid) continue;
                                __m256 src256 = _mm256_loadu_ps(&src[index]);
                                __m256 src256_2 = _mm256_permute_ps(src256, (1 << 0) | (3 << 4));
                                __m256 max256 = _mm256_max_ps(src256, src256_2);
                                __m128 src128_0 = _mm256_extractf128_ps(max256, 0);
                                __m128 src128_1 = _mm256_extractf128_ps(max256, 1);
                                __m128 src128 = _mm_shuffle_ps(src128_0, src128_1, (2 << 2) | (2 << 6));
                                max128 = _mm_max_ps(src128, max128);
                            }
                        }
                        _mm_storeu_ps(&dst[out_index], max128);
                    }
                }
                for (; j < out_w; ++j) {
                    int out_index = j + out_w*(i + out_h*(k + c*b));
                    float max = -FLT_MAX;
                    int max_i = -1;
                    for (n = 0; n < size; ++n) {
                        for (m = 0; m < size; ++m) {
                            int cur_h = h_offset + i*stride + n;
                            int cur_w = w_offset + j*stride + m;
                            int index = cur_w + w*(cur_h + h*(k + b*c));
                            int valid = (cur_h >= 0 && cur_h < h &&
                                cur_w >= 0 && cur_w < w);
                            float val = (valid != 0) ? src[index] : -FLT_MAX;
                            max_i = (val > max) ? index : max_i;
                            max = (val > max) ? val : max;
                        }
                    }
                    dst[out_index] = max;
                    indexes[out_index] = max_i;
                }
            }
        }
    }
}
#else
void gemm_nn(int M, int N, int K, float ALPHA,
@@ -755,6 +1559,55 @@
    }
}
void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
    float *weights, float *input, float *output, float *mean)
{
    int out_h = (h + 2 * pad - ksize) / stride + 1;    // output_height=input_height for stride=1 and pad=1
    int out_w = (w + 2 * pad - ksize) / stride + 1;    // output_width=input_width for stride=1 and pad=1
    int i, f, j;
    int fil;
    // filter index
#pragma omp parallel for      // "omp parallel for" - automatic parallelization of loop by using OpenMP
    for (fil = 0; fil < n; ++fil) {
        int chan, y, x, f_y, f_x;
        // channel index
        for (chan = 0; chan < c; ++chan)
            // input - y
            for (y = 0; y < h; ++y)
                // input - x
                for (x = 0; x < w; ++x)
                {
                    int const output_index = fil*w*h + y*w + x;
                    int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize;
                    int const input_pre_index = chan*w*h;
                    float sum = 0;
                    // filter - y
                    for (f_y = 0; f_y < ksize; ++f_y)
                    {
                        int input_y = y + f_y - pad;
                        // filter - x
                        for (f_x = 0; f_x < ksize; ++f_x)
                        {
                            int input_x = x + f_x - pad;
                            if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
                            int input_index = input_pre_index + input_y*w + input_x;
                            int weights_index = weights_pre_index + f_y*ksize + f_x;
                            sum += input[input_index] * weights[weights_index];
                        }
                    }
                    // l.output[filters][width][height] +=
                    //        state.input[channels][width][height] *
                    //        l.weights[filters][channels][filter_width][filter_height];
                    output[output_index] += sum;
                }
    }
}
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
    unsigned char *A, int lda,
    unsigned char *B, int ldb,
@@ -791,12 +1644,21 @@
    }
}
void im2col_cpu_custom_transpose(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col, int ldb_align)
{
    printf("\n im2col_cpu_custom_transpose() isn't implemented without AVX \n");
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col)
{
    im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
    return;
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
@@ -818,7 +1680,7 @@
                    int col_index = (c * height_col + h) * width_col + w;
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
    }
                }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
@@ -827,7 +1689,7 @@
                    data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                }
}
    }
            {
                w = 0;
@@ -881,6 +1743,118 @@
    }
}
//From Berkeley Vision's Caffe!
//https://github.com/BVLC/caffe/blob/master/LICENSE
void im2col_cpu_custom_bin(float* data_im,
    int channels, int height, int width,
    int ksize, int stride, int pad, float* data_col, int bit_align)
{
    int c, h, w;
    int height_col = (height + 2 * pad - ksize) / stride + 1;
    int width_col = (width + 2 * pad - ksize) / stride + 1;
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1)
    {
        int new_ldb = bit_align;
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
            int w_offset = c % ksize;
            int h_offset = (c / ksize) % ksize;
            int c_im = c / ksize / ksize;
            for (h = pad; h < height_col - pad; ++h) {
                for (w = pad; w < width_col - pad - 8; w += 1) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    float val = data_im[im_col + width*(im_row + height*c_im)];
                    if (val > 0) set_bit(data_col, col_index);
                }
                for (; w < width_col - pad; ++w) {
                    int im_row = h_offset + h - pad;
                    int im_col = w_offset + w - pad;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    float val = data_im[im_col + width*(im_row + height*c_im)];
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                w = 0;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                w = width_col - 1;
                for (h = 0; h < height_col; ++h) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                h = 0;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
            {
                h = height_col - 1;
                for (w = 0; w < width_col; ++w) {
                    int im_row = h_offset + h;
                    int im_col = w_offset + w;
                    //int col_index = (c * height_col + h) * width_col + w;
                    int col_index = c * new_ldb + h * width_col + w;
                    //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad);
                    if (val > 0) set_bit(data_col, col_index);
                }
            }
        }
    }
    else {
        printf("\n Error: is no non-optimized version \n");
        //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin
        // float_to_bit(b, t_input, src_size);
        // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
    }
}
void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
{
    int i;
@@ -959,7 +1933,44 @@
            }
        }
}
#endif    // __x86_64
void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c,
    int pad, int stride, int batch)
{
    int b, k;
    int w_offset = -pad / 2;
    int h_offset = -pad / 2;
    for (b = 0; b < batch; ++b) {
        #pragma omp parallel for
        for (k = 0; k < c; ++k) {
            int i, j, m, n;
            for (i = 0; i < out_h; ++i) {
                for (j = 0; j < out_w; ++j) {
                    int out_index = j + out_w*(i + out_h*(k + c*b));
                    float max = -FLT_MAX;
                    int max_i = -1;
                    for (n = 0; n < size; ++n) {
                        for (m = 0; m < size; ++m) {
                            int cur_h = h_offset + i*stride + n;
                            int cur_w = w_offset + j*stride + m;
                            int index = cur_w + w*(cur_h + h*(k + b*c));
                            int valid = (cur_h >= 0 && cur_h < h &&
                                cur_w >= 0 && cur_w < w);
                            float val = (valid != 0) ? src[index] : -FLT_MAX;
                            max_i = (val > max) ? index : max_i;
                            max = (val > max) ? val : max;
                        }
                    }
                    dst[out_index] = max;
                    indexes[out_index] = max_i;
                }
            }
        }
    }
}
#endif    // AVX
void gemm_nt(int M, int N, int K, float ALPHA,
        float *A, int lda,