| | |
| | | if (strcmp(type, "[cost]")==0) return COST; |
| | | if (strcmp(type, "[detection]")==0) return DETECTION; |
| | | if (strcmp(type, "[region]")==0) return REGION; |
| | | if (strcmp(type, "[yolo]") == 0) return YOLO; |
| | | if (strcmp(type, "[yolo]") == 0) return YOLO; |
| | | if (strcmp(type, "[local]")==0) return LOCAL; |
| | | if (strcmp(type, "[conv]")==0 |
| | | || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; |
| | |
| | | if (strcmp(type, "[max]")==0 |
| | | || strcmp(type, "[maxpool]")==0) return MAXPOOL; |
| | | if (strcmp(type, "[reorg]")==0) return REORG; |
| | | if (strcmp(type, "[reorg_old]") == 0) return REORG_OLD; |
| | | if (strcmp(type, "[reorg_old]") == 0) return REORG_OLD; |
| | | if (strcmp(type, "[avg]")==0 |
| | | || strcmp(type, "[avgpool]")==0) return AVGPOOL; |
| | | if (strcmp(type, "[dropout]")==0) return DROPOUT; |
| | |
| | | if (strcmp(type, "[soft]")==0 |
| | | || strcmp(type, "[softmax]")==0) return SOFTMAX; |
| | | if (strcmp(type, "[route]")==0) return ROUTE; |
| | | if (strcmp(type, "[upsample]") == 0) return UPSAMPLE; |
| | | if (strcmp(type, "[upsample]") == 0) return UPSAMPLE; |
| | | return BLANK; |
| | | } |
| | | |
| | |
| | | |
| | | int *parse_yolo_mask(char *a, int *num) |
| | | { |
| | | int *mask = 0; |
| | | if (a) { |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | mask = calloc(n, sizeof(int)); |
| | | for (i = 0; i < n; ++i) { |
| | | int val = atoi(a); |
| | | mask[i] = val; |
| | | a = strchr(a, ',') + 1; |
| | | } |
| | | *num = n; |
| | | } |
| | | return mask; |
| | | int *mask = 0; |
| | | if (a) { |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | mask = calloc(n, sizeof(int)); |
| | | for (i = 0; i < n; ++i) { |
| | | int val = atoi(a); |
| | | mask[i] = val; |
| | | a = strchr(a, ',') + 1; |
| | | } |
| | | *num = n; |
| | | } |
| | | return mask; |
| | | } |
| | | |
| | | layer parse_yolo(list *options, size_params params) |
| | | { |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int total = option_find_int(options, "num", 1); |
| | | int num = total; |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int total = option_find_int(options, "num", 1); |
| | | int num = total; |
| | | |
| | | char *a = option_find_str(options, "mask", 0); |
| | | int *mask = parse_yolo_mask(a, &num); |
| | | int max_boxes = option_find_int_quiet(options, "max", 90); |
| | | layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
| | | if (l.outputs != params.inputs) { |
| | | printf("Error: l.outputs == params.inputs \n"); |
| | | printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer \n"); |
| | | exit(EXIT_FAILURE); |
| | | } |
| | | //assert(l.outputs == params.inputs); |
| | | char *a = option_find_str(options, "mask", 0); |
| | | int *mask = parse_yolo_mask(a, &num); |
| | | int max_boxes = option_find_int_quiet(options, "max", 90); |
| | | layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
| | | if (l.outputs != params.inputs) { |
| | | printf("Error: l.outputs == params.inputs \n"); |
| | | printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer \n"); |
| | | exit(EXIT_FAILURE); |
| | | } |
| | | //assert(l.outputs == params.inputs); |
| | | |
| | | //l.max_boxes = option_find_int_quiet(options, "max", 90); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | //l.max_boxes = option_find_int_quiet(options, "max", 90); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | |
| | | l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
| | | l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
| | | l.random = option_find_int_quiet(options, "random", 0); |
| | | l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
| | | l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
| | | l.random = option_find_int_quiet(options, "random", 0); |
| | | |
| | | char *map_file = option_find_str(options, "map", 0); |
| | | if (map_file) l.map = read_map(map_file); |
| | | char *map_file = option_find_str(options, "map", 0); |
| | | if (map_file) l.map = read_map(map_file); |
| | | |
| | | a = option_find_str(options, "anchors", 0); |
| | | if (a) { |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | for (i = 0; i < n && i < total*2; ++i) { |
| | | float bias = atof(a); |
| | | l.biases[i] = bias; |
| | | a = strchr(a, ',') + 1; |
| | | } |
| | | } |
| | | return l; |
| | | a = option_find_str(options, "anchors", 0); |
| | | if (a) { |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | for (i = 0; i < n && i < total*2; ++i) { |
| | | float bias = atof(a); |
| | | l.biases[i] = bias; |
| | | a = strchr(a, ',') + 1; |
| | | } |
| | | } |
| | | return l; |
| | | } |
| | | |
| | | layer parse_region(list *options, size_params params) |
| | |
| | | int coords = option_find_int(options, "coords", 4); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int num = option_find_int(options, "num", 1); |
| | | int max_boxes = option_find_int_quiet(options, "max", 90); |
| | | int max_boxes = option_find_int_quiet(options, "max", 90); |
| | | |
| | | layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords, max_boxes); |
| | | if (l.outputs != params.inputs) { |
| | | printf("Error: l.outputs == params.inputs \n"); |
| | | printf("filters= in the [convolutional]-layer doesn't correspond to classes= or num= in [region]-layer \n"); |
| | | exit(EXIT_FAILURE); |
| | | } |
| | | if (l.outputs != params.inputs) { |
| | | printf("Error: l.outputs == params.inputs \n"); |
| | | printf("filters= in the [convolutional]-layer doesn't correspond to classes= or num= in [region]-layer \n"); |
| | | exit(EXIT_FAILURE); |
| | | } |
| | | //assert(l.outputs == params.inputs); |
| | | |
| | | l.log = option_find_int_quiet(options, "log", 0); |
| | | l.sqrt = option_find_int_quiet(options, "sqrt", 0); |
| | | |
| | | l.softmax = option_find_int(options, "softmax", 0); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | //l.max_boxes = option_find_int_quiet(options, "max",30); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.rescore = option_find_int_quiet(options, "rescore",0); |
| | |
| | | l.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | l.object_scale = option_find_float(options, "object_scale", 1); |
| | | l.noobject_scale = option_find_float(options, "noobject_scale", 1); |
| | | l.mask_scale = option_find_float(options, "mask_scale", 1); |
| | | l.mask_scale = option_find_float(options, "mask_scale", 1); |
| | | l.class_scale = option_find_float(options, "class_scale", 1); |
| | | l.bias_match = option_find_int_quiet(options, "bias_match",0); |
| | | |
| | |
| | | |
| | | layer parse_reorg_old(list *options, size_params params) |
| | | { |
| | | printf("\n reorg_old \n"); |
| | | int stride = option_find_int(options, "stride", 1); |
| | | int reverse = option_find_int_quiet(options, "reverse", 0); |
| | | printf("\n reorg_old \n"); |
| | | int stride = option_find_int(options, "stride", 1); |
| | | int reverse = option_find_int_quiet(options, "reverse", 0); |
| | | |
| | | int batch, h, w, c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch = params.batch; |
| | | if (!(h && w && c)) error("Layer before reorg layer must output image."); |
| | | int batch, h, w, c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch = params.batch; |
| | | if (!(h && w && c)) error("Layer before reorg layer must output image."); |
| | | |
| | | layer layer = make_reorg_old_layer(batch, w, h, c, stride, reverse); |
| | | return layer; |
| | | layer layer = make_reorg_old_layer(batch, w, h, c, stride, reverse); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer parse_maxpool(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | | int size = option_find_int(options, "size",stride); |
| | | int padding = option_find_int_quiet(options, "padding", (size-1)/2); |
| | | int padding = option_find_int_quiet(options, "padding", size-1); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | |
| | | |
| | | layer parse_shortcut(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "from"); |
| | | char *l = option_find(options, "from"); |
| | | int index = atoi(l); |
| | | if(index < 0) index = params.index + index; |
| | | |
| | |
| | | layer parse_upsample(list *options, size_params params, network net) |
| | | { |
| | | |
| | | int stride = option_find_int(options, "stride", 2); |
| | | layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride); |
| | | l.scale = option_find_float_quiet(options, "scale", 1); |
| | | return l; |
| | | int stride = option_find_int(options, "stride", 2); |
| | | layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride); |
| | | l.scale = option_find_float_quiet(options, "scale", 1); |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | | char *l = option_find(options, "layers"); |
| | | int len = strlen(l); |
| | | if(!l) error("Route Layer must specify input layers"); |
| | | int n = 1; |
| | |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
| | | net->min_crop = option_find_int_quiet(options, "min_crop",net->w); |
| | | net->flip = option_find_int_quiet(options, "flip", 1); |
| | | net->flip = option_find_int_quiet(options, "flip", 1); |
| | | |
| | | net->small_object = option_find_int_quiet(options, "small_object", 0); |
| | | net->small_object = option_find_int_quiet(options, "small_object", 0); |
| | | net->angle = option_find_float_quiet(options, "angle", 0); |
| | | net->aspect = option_find_float_quiet(options, "aspect", 1); |
| | | net->saturation = option_find_float_quiet(options, "saturation", 1); |
| | | net->exposure = option_find_float_quiet(options, "exposure", 1); |
| | | net->hue = option_find_float_quiet(options, "hue", 0); |
| | | net->power = option_find_float_quiet(options, "power", 4); |
| | | net->power = option_find_float_quiet(options, "power", 4); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | |
| | | net->policy = get_policy(policy_s); |
| | | net->burn_in = option_find_int_quiet(options, "burn_in", 0); |
| | | #ifdef CUDNN_HALF |
| | | net->burn_in = 0; |
| | | net->burn_in = 0; |
| | | #endif |
| | | if(net->policy == STEP){ |
| | | net->step = option_find_int(options, "step", 1); |
| | | net->scale = option_find_float(options, "scale", 1); |
| | | } else if (net->policy == STEPS){ |
| | | char *l = option_find(options, "steps"); |
| | | char *p = option_find(options, "scales"); |
| | | char *l = option_find(options, "steps"); |
| | | char *p = option_find(options, "scales"); |
| | | if(!l || !p) error("STEPS policy must have steps and scales in cfg file"); |
| | | |
| | | int len = strlen(l); |
| | |
| | | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | return parse_network_cfg_custom(filename, 0); |
| | | return parse_network_cfg_custom(filename, 0); |
| | | } |
| | | |
| | | network parse_network_cfg_custom(char *filename, int batch) |
| | |
| | | params.w = net.w; |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | if (batch > 0) net.batch = batch; |
| | | if (batch > 0) net.batch = batch; |
| | | params.batch = net.batch; |
| | | params.time_steps = net.time_steps; |
| | | params.net = net; |
| | | |
| | | float bflops = 0; |
| | | float bflops = 0; |
| | | size_t workspace_size = 0; |
| | | n = n->next; |
| | | int count = 0; |
| | |
| | | l = parse_cost(options, params); |
| | | }else if(lt == REGION){ |
| | | l = parse_region(options, params); |
| | | }else if (lt == YOLO) { |
| | | l = parse_yolo(options, params); |
| | | }else if (lt == YOLO) { |
| | | l = parse_yolo(options, params); |
| | | }else if(lt == DETECTION){ |
| | | l = parse_detection(options, params); |
| | | }else if(lt == SOFTMAX){ |
| | |
| | | }else if(lt == MAXPOOL){ |
| | | l = parse_maxpool(options, params); |
| | | }else if(lt == REORG){ |
| | | l = parse_reorg(options, params); } |
| | | else if (lt == REORG_OLD) { |
| | | l = parse_reorg_old(options, params); |
| | | l = parse_reorg(options, params); } |
| | | else if (lt == REORG_OLD) { |
| | | l = parse_reorg_old(options, params); |
| | | }else if(lt == AVGPOOL){ |
| | | l = parse_avgpool(options, params); |
| | | }else if(lt == ROUTE){ |
| | | l = parse_route(options, params, net); |
| | | }else if (lt == UPSAMPLE) { |
| | | l = parse_upsample(options, params, net); |
| | | }else if (lt == UPSAMPLE) { |
| | | l = parse_upsample(options, params, net); |
| | | }else if(lt == SHORTCUT){ |
| | | l = parse_shortcut(options, params, net); |
| | | }else if(lt == DROPOUT){ |
| | |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | if (l.bflops > 0) bflops += l.bflops; |
| | | } |
| | | if (l.bflops > 0) bflops += l.bflops; |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | | net.output = get_network_output(net); |
| | | printf("Total BFLOPS %5.3f \n", bflops); |
| | | printf("Total BFLOPS %5.3f \n", bflops); |
| | | if(workspace_size){ |
| | | //printf("%ld\n", workspace_size); |
| | | #ifdef GPU |
| | |
| | | net.workspace = calloc(1, workspace_size); |
| | | #endif |
| | | } |
| | | LAYER_TYPE lt = net.layers[net.n - 1].type; |
| | | if ((net.w % 32 != 0 || net.h % 32 != 0) && (lt == YOLO || lt == REGION || lt == DETECTION)) { |
| | | printf("\n Warning: width=%d and height=%d in cfg-file must be divisible by 32 for default networks Yolo v1/v2/v3!!! \n\n", |
| | | net.w, net.h); |
| | | } |
| | | return net; |
| | | } |
| | | |
| | |
| | | fread(&major, sizeof(int), 1, fp); |
| | | fread(&minor, sizeof(int), 1, fp); |
| | | fread(&revision, sizeof(int), 1, fp); |
| | | if ((major * 10 + minor) >= 2) { |
| | | printf("\n seen 64 \n"); |
| | | uint64_t iseen = 0; |
| | | fread(&iseen, sizeof(uint64_t), 1, fp); |
| | | *net->seen = iseen; |
| | | } |
| | | else { |
| | | printf("\n seen 32 \n"); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | } |
| | | if ((major * 10 + minor) >= 2) { |
| | | printf("\n seen 64 \n"); |
| | | uint64_t iseen = 0; |
| | | fread(&iseen, sizeof(uint64_t), 1, fp); |
| | | *net->seen = iseen; |
| | | } |
| | | else { |
| | | printf("\n seen 32 \n"); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | } |
| | | int transpose = (major > 1000) || (minor > 1000); |
| | | |
| | | int i; |