Joseph Redmon
2015-04-21 feabcc31de9dfb93b59d5a598a03b617dabe86da
src/convolutional_layer.c
@@ -29,7 +29,7 @@
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(h,w,c,layer.output);
    return float_to_image(w,h,c,layer.output);
}
image get_convolutional_delta(convolutional_layer layer)
@@ -38,19 +38,14 @@
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(h,w,c,layer.delta);
    return float_to_image(w,h,c,layer.delta);
}
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
{
    int i;
    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
    layer->learning_rate = learning_rate;
    layer->momentum = momentum;
    layer->decay = decay;
    layer->h = h;
    layer->w = w;
    layer->c = c;
@@ -66,7 +61,7 @@
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    float scale = 1./sqrt(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
    for(i = 0; i < n; ++i){
        layer->biases[i] = scale;
    }
@@ -95,11 +90,10 @@
    return layer;
}
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
{
    layer->h = h;
    layer->w = w;
    layer->c = c;
    int out_h = convolutional_out_height(*layer);
    int out_w = convolutional_out_width(*layer);
@@ -109,29 +103,48 @@
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    layer->delta  = realloc(layer->delta,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    #ifdef GPU
    cuda_free(layer->col_image_gpu);
    cuda_free(layer->delta_gpu);
    cuda_free(layer->output_gpu);
    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
    #endif
}
void bias_output(const convolutional_layer layer)
void bias_output(float *output, float *biases, int batch, int n, int size)
{
    int i,j,b;
    int out_h = convolutional_out_height(layer);
    int out_w = convolutional_out_width(layer);
    for(b = 0; b < layer.batch; ++b){
        for(i = 0; i < layer.n; ++i){
            for(j = 0; j < out_h*out_w; ++j){
                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            for(j = 0; j < size; ++j){
                output[(b*n + i)*size + j] = biases[i];
            }
        }
    }
}
void forward_convolutional_layer(const convolutional_layer layer, float *in)
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
{
    int i,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
        }
    }
}
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
{
    int out_h = convolutional_out_height(layer);
    int out_w = convolutional_out_width(layer);
    int i;
    bias_output(layer);
    bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
    int m = layer.n;
    int k = layer.size*layer.size*layer.c;
@@ -142,31 +155,17 @@
    float *c = layer.output;
    for(i = 0; i < layer.batch; ++i){
        im2col_cpu(in, layer.c, layer.h, layer.w,
        im2col_cpu(state.input, layer.c, layer.h, layer.w,
            layer.size, layer.stride, layer.pad, b);
        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        c += n*m;
        in += layer.c*layer.h*layer.w;
        state.input += layer.c*layer.h*layer.w;
    }
    activate_array(layer.output, m*n*layer.batch, layer.activation);
}
void learn_bias_convolutional_layer(convolutional_layer layer)
void backward_convolutional_layer(convolutional_layer layer, network_state state)
{
    float alpha = 1./layer.batch;
    int i,b;
    int size = convolutional_out_height(layer)
        *convolutional_out_width(layer);
    for(b = 0; b < layer.batch; ++b){
        for(i = 0; i < layer.n; ++i){
            layer.bias_updates[i] += alpha * sum_array(layer.delta+size*(i+b*layer.n), size);
        }
    }
}
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
{
    float alpha = 1./layer.batch;
    int i;
    int m = layer.n;
    int n = layer.size*layer.size*layer.c;
@@ -174,43 +173,42 @@
        convolutional_out_width(layer);
    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
    learn_bias_convolutional_layer(layer);
    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        float *a = layer.delta + i*m*k;
        float *b = layer.col_image;
        float *c = layer.filter_updates;
        float *im = in+i*layer.c*layer.h*layer.w;
        float *im = state.input+i*layer.c*layer.h*layer.w;
        im2col_cpu(im, layer.c, layer.h, layer.w, 
                layer.size, layer.stride, layer.pad, b);
        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
        gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
        if(delta){
        if(state.delta){
            a = layer.filters;
            b = layer.delta + i*m*k;
            c = layer.col_image;
            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
        }
    }
}
void update_convolutional_layer(convolutional_layer layer)
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
    axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
    axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, momentum, layer.filter_updates, 1);
}
@@ -219,42 +217,22 @@
    int h = layer.size;
    int w = layer.size;
    int c = layer.c;
    return float_to_image(h,w,c,layer.filters+i*h*w*c);
    return float_to_image(w,h,c,layer.filters+i*h*w*c);
}
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
image *get_filters(convolutional_layer layer)
{
    image *filters = calloc(layer.n, sizeof(image));
    int i,j,k,c;
    if(!prev_filters){
        for(i = 0; i < layer.n; ++i){
            filters[i] = copy_image(get_convolutional_filter(layer, i));
        }
    }
    else{
        image base = prev_filters[0];
        for(i = 0; i < layer.n; ++i){
            image filter = get_convolutional_filter(layer, i);
            filters[i] = make_image(base.h, base.w, base.c);
            for(j = 0; j < layer.size; ++j){
                for(k = 0; k < layer.size; ++k){
                    for(c = 0; c < layer.c; ++c){
                        float weight = get_pixel(filter, j, k, c);
                        image prev_filter = copy_image(prev_filters[c]);
                        scale_image(prev_filter, weight);
                        add_into_image(prev_filter, filters[i], 0,0);
                        free_image(prev_filter);
                    }
                }
            }
        }
    int i;
    for(i = 0; i < layer.n; ++i){
        filters[i] = copy_image(get_convolutional_filter(layer, i));
    }
    return filters;
}
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
{
    image *single_filters = weighted_sum_filters(layer, 0);
    image *single_filters = get_filters(layer);
    show_images(single_filters, layer.n, window);
    image delta = get_convolutional_image(layer);