| | |
| | | void train_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | int imgnet = 0; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | draw_detection(im, train.y.vals[114], 7); |
| | | */ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | } |
| | | } |
| | | |
| | | void validate_detection(char *cfgfile, char *weightfile) |
| | | void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer *layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer->classes; |
| | | int nuisance = layer->nuisance; |
| | | int background = (layer->background && !nuisance); |
| | | int num_boxes = sqrt(get_detection_layer_locations(*layer)); |
| | | |
| | | int per_box = 4+classes+background+nuisance; |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 100; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | fprintf(stderr, "%d\n", m); |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.w, net.h, &buffer); |
| | | clock_t time; |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &buffer); |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | matrix pred = network_predict_data(net, val); |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < .001) continue; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, prob, y, x, h, w); |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
| | | } |
| | | } |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void validate_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer *layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer->classes; |
| | | int nuisance = layer->nuisance; |
| | | int background = (layer->background && !nuisance); |
| | | int num_boxes = sqrt(get_detection_layer_locations(*layer)); |
| | | |
| | | int per_box = 4+classes+background+nuisance; |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 100; |
| | | |
| | | int nthreads = 4; |
| | | int t; |
| | | data *val = calloc(nthreads, sizeof(data)); |
| | | data *buf = calloc(nthreads, sizeof(data)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(data)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | clock_t time; |
| | | for(i = nthreads; i <= splits; i += nthreads){ |
| | | time=clock(); |
| | | free_data(val); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i < splits; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | predict_detections(net, val[t], .01, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | time=clock(); |
| | | } |
| | | } |
| | | |
| | |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, im_size, im_size); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |