| | |
| | | #include "softmax_layer.h" |
| | | #include "mini_blas.h" |
| | | #include <float.h> |
| | | #include <math.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | softmax_layer *make_softmax_layer(int inputs) |
| | | softmax_layer *make_softmax_layer(int batch, int inputs) |
| | | { |
| | | fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); |
| | | softmax_layer *layer = calloc(1, sizeof(softmax_layer)); |
| | | layer->batch = batch; |
| | | layer->inputs = inputs; |
| | | layer->output = calloc(inputs, sizeof(float)); |
| | | layer->delta = calloc(inputs, sizeof(float)); |
| | | layer->output = calloc(inputs*batch, sizeof(float)); |
| | | layer->delta = calloc(inputs*batch, sizeof(float)); |
| | | layer->jacobian = calloc(inputs*inputs*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_cl = cl_make_array(layer->output, inputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, inputs*batch); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | /* UNSTABLE! |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]); |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i])/sum; |
| | | } |
| | | } |
| | | */ |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | float largest = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | if(input[i] > largest) largest = input[i]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]-largest); |
| | | printf("%f, ", input[i]); |
| | | } |
| | | printf("\n"); |
| | | if(sum) sum = largest+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i]-sum); |
| | | int i,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | float sum = 0; |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i+b*layer.inputs]-largest); |
| | | } |
| | | if(sum) sum = largest+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta) |
| | | void backward_softmax_layer(const softmax_layer layer, float *delta) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | for(i = 0; i < layer.inputs*layer.batch; ++i){ |
| | | delta[i] = layer.delta[i]; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_softmax_layer_output(const softmax_layer layer) |
| | | { |
| | | cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch); |
| | | } |
| | | |
| | | cl_kernel get_softmax_forward_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/softmax_layer.cl", "forward", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | | } |
| | | |
| | | void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input) |
| | | { |
| | | cl_setup(); |
| | | cl_kernel kernel = get_softmax_forward_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.batch}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | |
| | | /* |
| | | cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch); |
| | | int z; |
| | | for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]); |
| | | */ |
| | | } |
| | | |
| | | void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta) |
| | | { |
| | | copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1); |
| | | } |
| | | #endif |
| | | |
| | | /* This is if you want softmax w/o log-loss classification. You probably don't. |
| | | int i,j,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int d = (i==j); |
| | | layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = |
| | | layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]); |
| | | } |
| | | } |
| | | } |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | int M = layer.inputs; |
| | | int N = 1; |
| | | int K = layer.inputs; |
| | | float *A = layer.jacobian + b*layer.inputs*layer.inputs; |
| | | float *B = layer.delta + b*layer.inputs; |
| | | float *C = delta + b*layer.inputs; |
| | | gemm(0,0,M,N,K,1,A,K,B,N,0,C,N); |
| | | } |
| | | */ |