| | |
| | | GPU=1 |
| | | OPENCV=1 |
| | | GPU=0 |
| | | OPENCV=0 |
| | | DEBUG=0 |
| | | |
| | | ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 |
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo2.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o |
| | | ifeq ($(GPU), 1) |
| | | LDFLAGS+= -lstdc++ |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o |
| | |
| | | return net.learning_rate * pow(net.gamma, batch_num); |
| | | case POLY: |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case RANDOM: |
| | | return net.learning_rate * pow(rand_uniform(0,1), net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
| | | default: |
| | |
| | | #include "data.h" |
| | | |
| | | typedef enum { |
| | | CONSTANT, STEP, EXP, POLY, STEPS, SIG |
| | | CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM |
| | | } learning_rate_policy; |
| | | |
| | | typedef struct network{ |
| | |
| | | |
| | | learning_rate_policy get_policy(char *s) |
| | | { |
| | | if (strcmp(s, "random")==0) return RANDOM; |
| | | if (strcmp(s, "poly")==0) return POLY; |
| | | if (strcmp(s, "constant")==0) return CONSTANT; |
| | | if (strcmp(s, "step")==0) return STEP; |
| | |
| | | } else if (net->policy == SIG){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->step = option_find_int(options, "step", 1); |
| | | } else if (net->policy == POLY){ |
| | | } else if (net->policy == POLY || net->policy == RANDOM){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | } |
| | | net->max_batches = option_find_int(options, "max_batches", 0); |
| | |
| | | float *y; |
| | | } float_pair; |
| | | |
| | | int *read_tokenized_data(char *filename, size_t *read) |
| | | { |
| | | size_t size = 512; |
| | | size_t count = 0; |
| | | FILE *fp = fopen(filename, "r"); |
| | | int *d = calloc(size, sizeof(int)); |
| | | int n, one; |
| | | one = fscanf(fp, "%d", &n); |
| | | while(one == 1){ |
| | | ++count; |
| | | if(count > size){ |
| | | size = size*2; |
| | | d = realloc(d, size*sizeof(int)); |
| | | } |
| | | d[count-1] = n; |
| | | one = fscanf(fp, "%d", &n); |
| | | } |
| | | fclose(fp); |
| | | d = realloc(d, count*sizeof(int)); |
| | | *read = count; |
| | | return d; |
| | | } |
| | | |
| | | char **read_tokens(char *filename, size_t *read) |
| | | { |
| | | size_t size = 512; |
| | | size_t count = 0; |
| | | FILE *fp = fopen(filename, "r"); |
| | | char **d = calloc(size, sizeof(char *)); |
| | | char *line; |
| | | while((line=fgetl(fp)) != 0){ |
| | | ++count; |
| | | if(count > size){ |
| | | size = size*2; |
| | | d = realloc(d, size*sizeof(char *)); |
| | | } |
| | | d[count-1] = line; |
| | | } |
| | | fclose(fp); |
| | | d = realloc(d, count*sizeof(char *)); |
| | | *read = count; |
| | | return d; |
| | | } |
| | | |
| | | float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps) |
| | | { |
| | | float *x = calloc(batch * steps * characters, sizeof(float)); |
| | | float *y = calloc(batch * steps * characters, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < batch; ++i){ |
| | | for(j = 0; j < steps; ++j){ |
| | | int curr = tokens[(offsets[i])%len]; |
| | | int next = tokens[(offsets[i] + 1)%len]; |
| | | |
| | | x[(j*batch + i)*characters + curr] = 1; |
| | | y[(j*batch + i)*characters + next] = 1; |
| | | |
| | | offsets[i] = (offsets[i] + 1) % len; |
| | | |
| | | if(curr >= characters || curr < 0 || next >= characters || next < 0){ |
| | | error("Bad char"); |
| | | } |
| | | } |
| | | } |
| | | float_pair p; |
| | | p.x = x; |
| | | p.y = y; |
| | | return p; |
| | | } |
| | | |
| | | float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps) |
| | | { |
| | | float *x = calloc(batch * steps * characters, sizeof(float)); |
| | |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | #ifdef GPU |
| | | layer l = net.layers[i]; |
| | | if(l.state_gpu){ |
| | | fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear) |
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized) |
| | | { |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | FILE *fp = fopen(filename, "rb"); |
| | | unsigned char *text = 0; |
| | | int *tokens = 0; |
| | | size_t size; |
| | | if(tokenized){ |
| | | tokens = read_tokenized_data(filename, &size); |
| | | } else { |
| | | FILE *fp = fopen(filename, "rb"); |
| | | |
| | | fseek(fp, 0, SEEK_END); |
| | | size_t size = ftell(fp); |
| | | fseek(fp, 0, SEEK_SET); |
| | | fseek(fp, 0, SEEK_END); |
| | | size = ftell(fp); |
| | | fseek(fp, 0, SEEK_SET); |
| | | |
| | | unsigned char *text = calloc(size+1, sizeof(char)); |
| | | fread(text, 1, size, fp); |
| | | fclose(fp); |
| | | text = calloc(size+1, sizeof(char)); |
| | | fread(text, 1, size, fp); |
| | | fclose(fp); |
| | | } |
| | | |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | char *base = basecfg(cfgfile); |
| | |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | float_pair p = get_rnn_data(text, offsets, inputs, size, streams, steps); |
| | | float_pair p; |
| | | if(tokenized){ |
| | | p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps); |
| | | }else{ |
| | | p = get_rnn_data(text, offsets, inputs, size, streams, steps); |
| | | } |
| | | |
| | | float loss = train_network_datum(net, p.x, p.y) / (batch); |
| | | free(p.x); |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed) |
| | | void print_symbol(int n, char **tokens){ |
| | | if(tokens){ |
| | | printf("%s ", tokens[n]); |
| | | } else { |
| | | printf("%c", n); |
| | | } |
| | | } |
| | | |
| | | void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file) |
| | | { |
| | | char **tokens = 0; |
| | | if(token_file){ |
| | | size_t n; |
| | | tokens = read_tokens(token_file, &n); |
| | | } |
| | | |
| | | srand(rseed); |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | |
| | | |
| | | int i, j; |
| | | for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; |
| | | unsigned char c; |
| | | int c = 0; |
| | | int len = strlen(seed); |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | |
| | | /* |
| | | fill_cpu(inputs, 0, input, 1); |
| | | for(i = 0; i < 10; ++i){ |
| | | network_predict(net, input); |
| | | } |
| | | fill_cpu(inputs, 0, input, 1); |
| | | */ |
| | | /* |
| | | fill_cpu(inputs, 0, input, 1); |
| | | for(i = 0; i < 10; ++i){ |
| | | network_predict(net, input); |
| | | } |
| | | fill_cpu(inputs, 0, input, 1); |
| | | */ |
| | | |
| | | for(i = 0; i < len-1; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | | input[c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | printf("%c", c); |
| | | input[c] = 0; |
| | | print_symbol(c, tokens); |
| | | } |
| | | c = seed[len-1]; |
| | | if(len) c = seed[len-1]; |
| | | print_symbol(c, tokens); |
| | | for(i = 0; i < num; ++i){ |
| | | printf("%c", c); |
| | | input[(int)c] = 1; |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | input[c] = 0; |
| | | for(j = 32; j < 127; ++j){ |
| | | //printf("%d %c %f\n",j, j, out[j]); |
| | | } |
| | | for(j = 0; j < inputs; ++j){ |
| | | //if (out[j] < .0001) out[j] = 0; |
| | | if (out[j] < .0001) out[j] = 0; |
| | | } |
| | | c = sample_array(out, inputs); |
| | | print_symbol(c, tokens); |
| | | } |
| | | printf("\n"); |
| | | } |
| | |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int count = 0; |
| | | int words = 1; |
| | | int c; |
| | | int len = strlen(seed); |
| | | float *input = calloc(inputs, sizeof(float)); |
| | |
| | | if(next == EOF) break; |
| | | if(next < 0 || next >= 255) error("Out of range character"); |
| | | ++count; |
| | | if(next == ' ' || next == '\n' || next == '\t') ++words; |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[c] = 0; |
| | | sum += log(out[next])/log2; |
| | | c = next; |
| | | printf("%d Perplexity: %f\n", count, pow(2, -sum/count)); |
| | | printf("%d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words)); |
| | | } |
| | | } |
| | | |
| | |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | c = ' '; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | c = ' '; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | |
| | | layer l = net.layers[0]; |
| | | #ifdef GPU |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs); |
| | | #endif |
| | | printf("%s", line); |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | printf(",%g", l.output[i]); |
| | |
| | | float temp = find_float_arg(argc, argv, "-temp", .7); |
| | | int rseed = find_int_arg(argc, argv, "-srand", time(0)); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | int tokenized = find_arg(argc, argv, "-tokenized"); |
| | | char *tokens = find_char_arg(argc, argv, "-tokens", 0); |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear); |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens); |
| | | } |