Stable, needs to be way faster
| | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
| | |
| | | set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = 77700; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case SOFTMAX: |
| | | return "softmax"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case FREEWEIGHT: |
| | | return "freeweight"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | default: |
| | | break; |
| | | } |
| | | return "none"; |
| | | } |
| | | |
| | | |
| | | |
| | | network make_network(int n, int batch) |
| | | { |
| | | network net; |
| | |
| | | #endif |
| | | |
| | | void compare_networks(network n1, network n2, data d); |
| | | char *get_layer_string(LAYER_TYPE a); |
| | | |
| | | network make_network(int n, int batch); |
| | | void forward_network(network net, float *input, float *truth, int train); |
| | |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | clock_t time = clock(); |
| | | //clock_t time = clock(); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer_gpu(layer, input); |
| | |
| | | input = layer.output_cl; |
| | | } |
| | | check_error(cl); |
| | | //printf("Forw %d %f\n", i, sec(clock() - time)); |
| | | //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time)); |
| | | } |
| | | } |
| | | |
| | |
| | | cl_mem prev_input; |
| | | cl_mem prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | clock_t time = clock(); |
| | | //clock_t time = clock(); |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | |
| | | backward_softmax_layer_gpu(layer, prev_delta); |
| | | } |
| | | check_error(cl); |
| | | //printf("Back %d %f\n", i, sec(clock() - time)); |
| | | //printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time)); |
| | | } |
| | | } |
| | | |