Merge pull request #741 from IlyaOvodov/Fix_detector_output
Output improvements for detector results:
| | |
| | | int sort_class; |
| | | } detection; |
| | | |
| | | typedef struct detection_with_class { |
| | | detection det; |
| | | // The most probable class id: the best class index in this->prob. |
| | | // Is filled temporary when processing results, otherwise not initialized |
| | | int best_class; |
| | | } detection_with_class; |
| | | |
| | | box float_to_box(float *f); |
| | | float box_iou(box a, box b); |
| | | float box_rmse(box a, box b); |
| | |
| | | box decode_box(box b, box anchor); |
| | | box encode_box(box b, box anchor); |
| | | |
| | | // Creates array of detections with prob > thresh and fills best_class for them |
| | | // Return number of selected detections in *selected_detections_num |
| | | detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num); |
| | | |
| | | #endif |
| | |
| | | size_t total_byte; |
| | | check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
| | | if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { |
| | | printf(" used slow CUDNN algo without Workspace! \n"); |
| | | printf(" used slow CUDNN algo without Workspace! Need memory: %d, available: %d\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2); |
| | | cudnn_convolutional_setup(l, cudnn_smallest); |
| | | l->workspace_size = get_workspace_size(*l); |
| | | } |
| | |
| | | #endif |
| | | |
| | | extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); |
| | | extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh); |
| | | extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int ext_output); |
| | | extern void run_voxel(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_detector(int argc, char **argv); |
| | |
| | | run_detector(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "detect")){ |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | char *filename = (argc > 4) ? argv[4]: 0; |
| | | test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh); |
| | | test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, ext_output); |
| | | } else if (0 == strcmp(argv[1], "cifar")){ |
| | | run_cifar(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "go")){ |
| | |
| | | } |
| | | #endif // OPENCV |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show) |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, |
| | | float hier_thresh, int dont_show, int ext_output) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes); |
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); |
| | | free_detections(dets, nboxes); |
| | | save_image(im, "predictions"); |
| | | if (!dont_show) { |
| | |
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
| | | int width = find_int_arg(argc, argv, "-width", -1); |
| | | int height = find_int_arg(argc, argv, "-height", -1); |
| | | // extended output in test mode (output of rect bound coords) |
| | | // and for recall mode (extended output table-like format with results for best_class fit) |
| | | int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | if(strlen(weights) > 0) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show); |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | |
| | | return alphabets; |
| | | } |
| | | |
| | | void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes) |
| | | { |
| | | int i, j; |
| | | |
| | | for (i = 0; i < num; ++i) { |
| | | char labelstr[4096] = { 0 }; |
| | | int class_id = -1; |
| | | for (j = 0; j < classes; ++j) { |
| | | if (dets[i].prob[j] > thresh) { |
| | | if (class_id < 0) { |
| | | strcat(labelstr, names[j]); |
| | | class_id = j; |
| | | } |
| | | else { |
| | | strcat(labelstr, ", "); |
| | | strcat(labelstr, names[j]); |
| | | } |
| | | printf("%s: %.0f%%\n", names[j], dets[i].prob[j] * 100); |
| | | |
| | | // Creates array of detections with prob > thresh and fills best_class for them |
| | | detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num) |
| | | { |
| | | int selected_num = 0; |
| | | detection_with_class* result_arr = calloc(dets_num, sizeof(detection_with_class)); |
| | | for (int i = 0; i < dets_num; ++i) { |
| | | int best_class = -1; |
| | | float best_class_prob = thresh; |
| | | for (int j = 0; j < dets[i].classes; ++j) { |
| | | if (dets[i].prob[j] > best_class_prob ) { |
| | | best_class = j; |
| | | best_class_prob = dets[i].prob[j]; |
| | | } |
| | | } |
| | | if (class_id >= 0) { |
| | | if (best_class >= 0) { |
| | | result_arr[selected_num].det = dets[i]; |
| | | result_arr[selected_num].best_class = best_class; |
| | | ++selected_num; |
| | | } |
| | | } |
| | | if (selected_detections_num) |
| | | *selected_detections_num = selected_num; |
| | | return result_arr; |
| | | } |
| | | |
| | | // compare to sort detection** by bbox.x |
| | | int compare_by_lefts(const void *a_ptr, const void *b_ptr) { |
| | | const detection_with_class* a = (detection_with_class*)a_ptr; |
| | | const detection_with_class* b = (detection_with_class*)b_ptr; |
| | | const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2); |
| | | return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
| | | } |
| | | |
| | | // compare to sort detection** by best_class probability |
| | | int compare_by_probs(const void *a_ptr, const void *b_ptr) { |
| | | const detection_with_class* a = (detection_with_class*)a_ptr; |
| | | const detection_with_class* b = (detection_with_class*)b_ptr; |
| | | float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class]; |
| | | return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
| | | } |
| | | |
| | | void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) |
| | | { |
| | | int selected_detections_num; |
| | | detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num); |
| | | |
| | | // text output |
| | | qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts); |
| | | for (int i = 0; i < selected_detections_num; ++i) { |
| | | const int best_class = selected_detections[i].best_class; |
| | | printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100); |
| | | if (ext_output) |
| | | printf("\t(left: %.0f\ttop: %.0f\tw: %0.f\th: %0.f)\n", |
| | | (selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w, |
| | | (selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h, |
| | | selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h); |
| | | else |
| | | printf("\n"); |
| | | for (int j = 0; j < classes; ++j) { |
| | | if (selected_detections[i].det.prob[j] > thresh && j != best_class) { |
| | | printf("%s: %.0f%%\n", names[j], selected_detections[i].det.prob[j] * 100); |
| | | } |
| | | } |
| | | } |
| | | |
| | | // image output |
| | | qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs); |
| | | for (int i = 0; i < selected_detections_num; ++i) { |
| | | int width = im.h * .006; |
| | | if (width < 1) |
| | | width = 1; |
| | |
| | | } |
| | | */ |
| | | |
| | | //printf("%d %s: %.0f%%\n", i, names[class_id], prob*100); |
| | | int offset = class_id * 123457 % classes; |
| | | //printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100); |
| | | int offset = selected_detections[i].best_class * 123457 % classes; |
| | | float red = get_color(2, offset, classes); |
| | | float green = get_color(1, offset, classes); |
| | | float blue = get_color(0, offset, classes); |
| | |
| | | rgb[0] = red; |
| | | rgb[1] = green; |
| | | rgb[2] = blue; |
| | | box b = dets[i].bbox; |
| | | box b = selected_detections[i].det.bbox; |
| | | //printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); |
| | | |
| | | int left = (b.x - b.w / 2.)*im.w; |
| | |
| | | |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | if (alphabet) { |
| | | char labelstr[4096] = { 0 }; |
| | | strcat(labelstr, names[selected_detections[i].best_class]); |
| | | for (int j = 0; j < classes; ++j) { |
| | | if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) { |
| | | strcat(labelstr, ", "); |
| | | strcat(labelstr, names[j]); |
| | | } |
| | | } |
| | | image label = get_label_v3(alphabet, labelstr, (im.h*.03)); |
| | | draw_label(im, top + width, left, label, rgb); |
| | | free_image(label); |
| | | } |
| | | if (dets[i].mask) { |
| | | image mask = float_to_image(14, 14, 1, dets[i].mask); |
| | | if (selected_detections[i].det.mask) { |
| | | image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask); |
| | | image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h); |
| | | image tmask = threshold_image(resized_mask, .5); |
| | | embed_image(tmask, im, left, top); |
| | |
| | | free_image(tmask); |
| | | } |
| | | } |
| | | } |
| | | free(selected_detections); |
| | | } |
| | | |
| | | void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) |
| | |
| | | void draw_label(image a, int r, int c, image label, const float *rgb); |
| | | void write_label(image a, int r, int c, image *characters, char *string, float *rgb); |
| | | void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **labels, int classes); |
| | | void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes); |
| | | void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output); |
| | | image image_distance(image a, image b); |
| | | void scale_image(image m, float s); |
| | | image crop_image(image im, int dx, int dy, int w, int h); |