| | |
| | | import cv2 |
| | | import numpy as np |
| | | import pandas as pd |
| | | import imagehash as ih |
| | | import os |
| | | import ast |
| | | import queue |
| | | import sys |
| | | import math |
| | | import random |
| | | import collections |
| | | import cv2 |
| | | import imagehash as ih |
| | | import numpy as np |
| | | from operator import itemgetter |
| | | import time |
| | | import os |
| | | import pandas as pd |
| | | from PIL import Image |
| | | import time |
| | | |
| | | import fetch_data |
| | | import transform_data |
| | | |
| | | card_width = 315 |
| | | card_height = 440 |
| | | |
| | | |
| | | def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4): |
| | | """ |
| | | Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed |
| | | :param card_pool: pandas dataframe containing all card information |
| | | :param save_to: path for the pickle file to be saved |
| | | :param hash_size: param for pHash algorithm |
| | | :param highfreq_factor: param for pHash algorithm |
| | | :return: pandas dataframe |
| | | """ |
| | | # Since some double-faced cards may result in two different cards, create a new dataframe to store the result |
| | | new_pool = pd.DataFrame(columns=list(card_pool.columns.values)) |
| | | new_pool['card_hash'] = np.NaN |
| | | new_pool['art_hash'] = np.NaN |
| | | #new_pool['art_hash'] = np.NaN |
| | | for ind, card_info in card_pool.iterrows(): |
| | | if ind % 100 == 0: |
| | | print(ind) |
| | | print('Calculating hashes: %dth card' % ind) |
| | | |
| | | card_names = [] |
| | | # Double-faced cards have a different json format than normal cards |
| | | if card_info['layout'] in ['transform', 'double_faced_token']: |
| | | if isinstance(card_info['card_faces'], str): # For some reason, dict isn't being parsed in the previous step |
| | | if isinstance(card_info['card_faces'], str): |
| | | card_faces = ast.literal_eval(card_info['card_faces']) |
| | | else: |
| | | card_faces = card_info['card_faces'] |
| | |
| | | card_names.append(card_info['name']) |
| | | |
| | | for card_name in card_names: |
| | | # Fetch the image - name can be found based on the card's information |
| | | card_info['name'] = card_name |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | card_img = cv2.imread(img_name) |
| | | |
| | | # If the image doesn't exist, download it from the URL |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, |
| | | out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set'])) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | | #img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image |
| | | #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) |
| | | #card_pool.at[ind, 'art_hash'] = art_hash |
| | | |
| | | # Compute value of the card's perceptual hash, then store it to the database |
| | | ''' |
| | | img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image |
| | | art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | card_info['art_hash'] = art_hash |
| | | ''' |
| | | img_card = Image.fromarray(card_img) |
| | | card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | #card_pool.at[ind, 'card_hash'] = card_hash |
| | | card_info['card_hash'] = card_hash |
| | | #print(new_pool.index.max()) |
| | | new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info |
| | | |
| | | # Remove uselesss fields, then pickle it if needed |
| | | new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', |
| | | 'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', |
| | | 'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']] |
| | |
| | | |
| | | # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ |
| | | def order_points(pts): |
| | | # initialzie a list of coordinates that will be ordered |
| | | # such that the first entry in the list is the top-left, |
| | | # the second entry is the top-right, the third is the |
| | | # bottom-right, and the fourth is the bottom-left |
| | | """ |
| | | initialzie a list of coordinates that will be ordered such that the first entry in the list is the top-left, |
| | | the second entry is the top-right, the third is the bottom-right, and the fourth is the bottom-left |
| | | :param pts: array containing 4 points |
| | | :return: ordered list of 4 points |
| | | """ |
| | | rect = np.zeros((4, 2), dtype="float32") |
| | | |
| | | # the top-left point will have the smallest sum, whereas |
| | |
| | | return rect |
| | | |
| | | |
| | | # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ |
| | | def four_point_transform(image, pts): |
| | | """ |
| | | Transform a quadrilateral section of an image into a rectangular area |
| | | From: www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ |
| | | :param image: source image |
| | | :param pts: 4 corners of the quadrilateral |
| | | :return: rectangular image of the specified area |
| | | """ |
| | | # obtain a consistent order of the points and unpack them |
| | | # individually |
| | | rect = order_points(pts) |
| | |
| | | return warped |
| | | |
| | | |
| | | ''' |
| | | # The following functions are only used in conjunction with YOLO, and is deprecated: |
| | | # - get_outputs_names() |
| | | # - post_process() |
| | | # - draw_pred() |
| | | # Get the names of the output layers |
| | | def get_outputs_names(net): |
| | | # Get the names of all the layers in the network |
| | |
| | | label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
| | | top = max(top, label_size[1]) |
| | | cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
| | | ''' |
| | | |
| | | |
| | | def remove_glare(img): |
| | | """ |
| | | Reduce the effect of glaring in the image |
| | | Inspired from: |
| | | http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html |
| | | The idea is to find area that has low saturation but high value, which is what a glare usually look like. |
| | | :param img: source image |
| | | :return: corrected image with glaring smoothened out |
| | | """ |
| | | img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
| | | _, s, v = cv2.split(img_hsv) |
| | |
| | | return corrected |
| | | |
| | | |
| | | def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=5000): |
| | | def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000): |
| | | """ |
| | | Find contours of all cards in the image |
| | | :param img: source image |
| | | :param thresh_c: value of the constant C for adaptive thresholding |
| | | :param kernel_size: dimension of the kernel used for dilation and erosion |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :return: list of candidate contours |
| | | """ |
| | | # Typical pre-processing - grayscale, blurring, thresholding |
| | | img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| | | img_blur = cv2.medianBlur(img_gray, 5) |
| | |
| | | img_erode = cv2.erode(img_dilate, kernel, iterations=1) |
| | | |
| | | # Find the contour |
| | | #img_contour = img_erode.copy() |
| | | _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | if len(cnts) == 0: |
| | | print('no contours') |
| | | return [] |
| | | cv2.drawContours(img, cnts, -1, (0, 0, 255), 1) |
| | | ''' |
| | | next = 0 |
| | | while next != -1: |
| | | img_copy = img.copy() |
| | | print(hier[0][next]) |
| | | cv2.drawContours(img_copy, cnts[hier[0][next][0]], -1, (0, 255, 0), 2) |
| | | cv2.imshow('hi', img_copy) |
| | | cv2.waitKey(0) |
| | | next = hier[0][next][0] |
| | | ''' |
| | | #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR) |
| | | #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1) |
| | | #cv2.imshow('test', img_contour) |
| | | |
| | | ''' |
| | | The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child, |
| | | their previous and next node |
| | | Using (preorder) depth-first search, find the uppermost contour in the hierarchy that satisfies the condition |
| | | The candidate contour must be rectangle (has 4 points) and should be larger than a threshold |
| | | ''' |
| | | |
| | | # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child |
| | | # their previous and next node |
| | | # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition |
| | | # The candidate contour must be rectangle (has 4 points) and should be larger than a threshold |
| | | cnts_rect = [] |
| | | stack = [(0, hier[0][0])] |
| | | while len(stack) > 0: |
| | |
| | | size = cv2.contourArea(cnt) |
| | | peri = cv2.arcLength(cnt, True) |
| | | approx = cv2.approxPolyDP(cnt, 0.04 * peri, True) |
| | | if size >= size_thresh: |
| | | cv2.drawContours(img, [cnt], -1, (255, 0, 0), 1) |
| | | #print(size) |
| | | if len(approx) == 4: |
| | | cnts_rect.append(approx) |
| | | if size >= size_thresh and len(approx) == 4: |
| | | cnts_rect.append(approx) |
| | | else: |
| | | if i_child != -1: |
| | | stack.append((i_child, hier[0][i_child])) |
| | | |
| | | |
| | | ''' |
| | | # For each contours detected, check if they are large enough and are rectangle |
| | | ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True) |
| | | for i in range(len(cnts)): |
| | | peri = cv2.arcLength(cnts[ind_sort[i]], True) |
| | | approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True) |
| | | if len(approx) == 4: |
| | | cnts_rect.append(approx) |
| | | ''' |
| | | |
| | | return cnts_rect |
| | | |
| | | |
| | | def draw_card_graph(exist_cards, card_pool, f_len): |
| | | w_card = 63 |
| | | """ |
| | | Given the history of detected cards in the current and several previous frames, draw a simple graph |
| | | displaying the detected cards with its confidence level |
| | | :param exist_cards: History of all detected cards in the previous (f_len) frames |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param f_len: length of windows (in frames) to consider for confidence level |
| | | :return: |
| | | """ |
| | | # Lots of constants to set the dimension of each elements |
| | | w_card = 63 # Width of the card image displayed |
| | | h_card = 88 |
| | | gap = 25 |
| | | gap_sm = 10 |
| | | w_bar = 300 |
| | | gap = 25 # Offset between each elements |
| | | gap_sm = 10 # Small offset |
| | | w_bar = 300 # Length of the confidence bar at 100% |
| | | h_bar = 12 |
| | | txt_scale = 0.8 |
| | | n_cards_p_col = 4 |
| | | w_img = gap + (w_card + gap + w_bar + gap) * 2 |
| | | #h_img = gap + (h_card + gap) * n_cards_p_col |
| | | n_cards_p_col = 4 # Number of cards displayed per one column |
| | | w_img = gap + (w_card + gap + w_bar + gap) * 2 # Dimension of the entire graph (for 2 columns) |
| | | h_img = 480 |
| | | img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8) |
| | | x_anchor = gap |
| | | y_anchor = gap |
| | | |
| | | i = 0 |
| | | |
| | | # Cards are displayed from the most confident to the least |
| | | # Confidence level is calculated by number of frames that the card was detected in |
| | | for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]: |
| | | card_name = key[:key.find('(') - 1] |
| | | card_set = key[key.find('(') + 1:key.find(')')] |
| | | confidence = sum(val) / f_len |
| | | card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0] |
| | | img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | card_img = cv2.imread(img_name) |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | # If the card image is not found, just leave it blank |
| | | if os.path.exists(img_name): |
| | | card_img = cv2.imread(img_name) |
| | | else: |
| | | card_img = np.ones((h_card, w_card)) |
| | | |
| | | # Insert the card image, card name, and confidence bar to the graph |
| | | img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img |
| | | cv2.putText(img_graph, '%s (%s)' % (card_name, card_set), |
| | | (x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX, |
| | |
| | | return img_graph |
| | | |
| | | |
| | | def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), card_size=1000, |
| | | def detect_frame(img, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000, |
| | | out_path=None, display=True, debug=False): |
| | | start_1 = time.time() |
| | | elapsed = [] |
| | | ''' |
| | | # Create a 4D blob from a frame. |
| | | blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) |
| | | """ |
| | | Identify all cards in the input frame, display or save the frame if needed |
| | | :param img: input frame |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param hash_size: param for pHash algorithm |
| | | :param highfreq_factor: param for pHash algorithm |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :param out_path: path to save the result |
| | | :param display: flag for displaying the result |
| | | :param debug: flag for debug mode |
| | | :return: list of detected card's name/set and resulting image |
| | | """ |
| | | |
| | | # Sets the input to the network |
| | | net.setInput(blob) |
| | | |
| | | # Runs the forward pass to get output of the output layers |
| | | outs = net.forward(get_outputs_names(net)) |
| | | elapsed.append((time.time() - start_1) * 1000) |
| | | |
| | | start_2 = time.time() |
| | | img_result = img.copy() |
| | | |
| | | # Remove the bounding boxes with low confidence |
| | | obj_list = post_process(img, outs, thresh_conf, thresh_nms) |
| | | for obj in obj_list: |
| | | class_id, confidence, box = obj |
| | | left, top, width, height = box |
| | | draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height) |
| | | elapsed.append((time.time() - start_2) * 1000) |
| | | ''' |
| | | img_result = img.copy() |
| | | # Put efficiency information. The function getPerfProfile returns the |
| | | # overall time for inference(t) and the timings for each of the layers(in layersTimes) |
| | | #if display: |
| | | # t, _ = net.getPerfProfile() |
| | | # label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) |
| | | # cv2.putText(img_result, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
| | | |
| | | ''' |
| | | Assuming that the model has properly identified all cards, there should be 1 card that can be classified per |
| | | bounding box. Find the largest rectangular contour from the region of interest, and identify the card by |
| | | comparing the perceptual hashing of the image with the other cards' image from the database. |
| | | ''' |
| | | img_result = img.copy() # For displaying and saving |
| | | det_cards = [] |
| | | start_3 = time.time() |
| | | cnts = find_card(img_result) |
| | | # Detect contours of all cards in the image |
| | | cnts = find_card(img_result, size_thresh=size_thresh) |
| | | for i in range(len(cnts)): |
| | | cnt = cnts[i] |
| | | # ignore any contours smaller than threshold |
| | | elapsed.append((time.time() - start_3) * 1000) |
| | | start_4 = time.time() |
| | | # For the region of the image covered by the contour, transform them into a rectangular image |
| | | pts = np.float32([p[0] for p in cnt]) |
| | | img_warp = four_point_transform(img, pts) |
| | | img_warp = cv2.resize(img_warp, (card_width, card_height)) |
| | | elapsed.append((time.time() - start_4) * 1000) |
| | | |
| | | # To identify the card from the card image, perceptual hashing (pHash) algorithm is used |
| | | # Perceptual hash is a hash string built from features of the input medium. If two media are similar |
| | | # (ie. has similar features), their resulting pHash value will be very close. |
| | | # Using this property, the matching card for the given card image can be found by comparing pHash of |
| | | # all cards in the database, then finding the card that results in the minimal difference in pHash value. |
| | | ''' |
| | | img_art = img_warp[47:249, 22:294] |
| | | img_art = Image.fromarray(img_art.astype('uint8'), 'RGB') |
| | | art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4) |
| | | card_pool['hash_diff'] = card_pool['art_hash'] - art_hash |
| | | min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] |
| | | card_name = min_cards.iloc[0]['name'] |
| | | art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash)) |
| | | ''' |
| | | start_5 = time.time() |
| | | img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB') |
| | | card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten() |
| | | # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time |
| | | card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten() |
| | | card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash)) |
| | | min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])] |
| | | card_name = min_cards.iloc[0]['name'] |
| | | card_set = min_cards.iloc[0]['set'] |
| | | min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0] |
| | | card_name = min_card['name'] |
| | | card_set = min_card['set'] |
| | | det_cards.append((card_name, card_set)) |
| | | hash_diff = min_cards.iloc[0]['hash_diff'] |
| | | elapsed.append((time.time() - start_5) * 1000) |
| | | hash_diff = min_card['hash_diff'] |
| | | |
| | | # Display the result |
| | | # Render the result, and display them if needed |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2) |
| | | cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | if debug: |
| | | # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2) |
| | | cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50), |
| | | cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) |
| | | cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 1) |
| | | cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) |
| | | if debug: |
| | | cv2.imshow('card#%d' % i, img_warp) |
| | | #if debug: |
| | | # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | if display: |
| | | cv2.imshow('Result', img_result) |
| | | cv2.waitKey(0) |
| | | |
| | | if out_path is not None: |
| | | cv2.imwrite(out_path, img_result.astype(np.uint8)) |
| | | elapsed = [(time.time() - start_1) * 1000] + elapsed |
| | | #print(', '.join(['%.2f' % t for t in elapsed])) |
| | | return det_cards, img_result |
| | | |
| | | |
| | | def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, |
| | | display=True, debug=False): |
| | | if out_path is not None: |
| | | img_graph = draw_card_graph({}, None, -1) # Black image of the graph just to get the dimension |
| | | def detect_video(capture, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000, |
| | | out_path=None, display=True, show_graph=True, debug=False): |
| | | """ |
| | | Identify all cards in the continuous video stream, display or save the result if needed |
| | | :param capture: input video stream |
| | | :param card_pool: pandas dataframe of all card's information |
| | | :param hash_size: param for pHash algorithm |
| | | :param highfreq_factor: param for pHash algorithm |
| | | :param size_thresh: threshold for size (in pixel) of the contour to be a candidate |
| | | :param out_path: path to save the result |
| | | :param display: flag for displaying the result |
| | | :param show_graph: flag to show graph |
| | | :param debug: flag for debug mode |
| | | :return: list of detected card's name/set and resulting image |
| | | :return: |
| | | """ |
| | | # Get the dimension of the output video, and set it up |
| | | if show_graph: |
| | | img_graph = draw_card_graph({}, pd.DataFrame(), -1) # Black image of the graph just to get the dimension |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1] |
| | | height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0]) |
| | | else: |
| | | width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) |
| | | height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
| | | if out_path is not None: |
| | | vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height)) |
| | | max_num_obj = 0 |
| | | f_len = 10 # number of frames to consider to check for existing cards |
| | |
| | | print("End of video. Press any key to exit") |
| | | cv2.waitKey(0) |
| | | break |
| | | # Use the YOLO model to identify each cards annonymously |
| | | start_yolo = time.time() |
| | | det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf, |
| | | thresh_nms=thresh_nms, in_dim=in_dim, out_path=None, display=display, |
| | | debug=debug) |
| | | elapsed_yolo = (time.time() - start_yolo) * 1000 |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | | # If the card previously detected was not found in this trame, append 0 to the list |
| | | # If the card wasn't previously detected, make a new list and add 1 to it |
| | | # If the same card is detected multiple times in the same frame, keep track of the duplicates |
| | | # The confidence will be calculated based on the number of frames the card was detected for |
| | | det_cards_count = collections.Counter(det_cards).items() |
| | | det_cards_list = [] |
| | | for card, count in det_cards_count: |
| | | card_name, card_set = card |
| | | for i in range(count): 1 |
| | | key = '%s (%s) #%d' % (card_name, card_set, i + 1) |
| | | det_cards_list.append(key) |
| | | gone = [] |
| | | for key, val in exist_cards.items(): |
| | | if key in det_cards_list: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [1] |
| | | else: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [0] |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone.append(key) |
| | | for key in det_cards_list: |
| | | if key not in exist_cards.keys(): |
| | | exist_cards[key] = [1] |
| | | for key in gone: |
| | | exist_cards.pop(key) |
| | | start_graph = time.time() |
| | | img_graph = draw_card_graph(exist_cards, card_pool, f_len) |
| | | elapsed_graph = (time.time() - start_graph) * 1000 |
| | | #if debug: |
| | | # max_num_obj = max(max_num_obj, len(obj_list)) |
| | | # for i in range(len(obj_list), max_num_obj): |
| | | # cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | # Detect all cards from the current frame |
| | | det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, highfreq_factor=highfreq_factor, |
| | | size_thresh=size_thresh, out_path=None, display=False, debug=debug) |
| | | if show_graph: |
| | | # If the card was already detected in the previous frame, append 1 to the list |
| | | # If the card previously detected was not found in this trame, append 0 to the list |
| | | # If the card wasn't previously detected, make a new list and add 1 to it |
| | | # If the same card is detected multiple times in the same frame, keep track of the duplicates |
| | | # The confidence will be calculated based on the number of frames the card was detected for |
| | | det_cards_count = collections.Counter(det_cards).items() |
| | | det_cards_list = [] |
| | | for card, count in det_cards_count: |
| | | card_name, card_set = card |
| | | for i in range(count): 1 |
| | | key = '%s (%s) #%d' % (card_name, card_set, i + 1) |
| | | det_cards_list.append(key) |
| | | gone = [] |
| | | for key, val in exist_cards.items(): |
| | | if key in det_cards_list: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [1] |
| | | else: |
| | | exist_cards[key] = exist_cards[key][1 - f_len:] + [0] |
| | | if len(val) == f_len and sum(val) == 0: |
| | | gone.append(key) |
| | | for key in det_cards_list: |
| | | if key not in exist_cards.keys(): |
| | | exist_cards[key] = [1] |
| | | for key in gone: |
| | | exist_cards.pop(key) |
| | | |
| | | start_display = time.time() |
| | | img_save = np.zeros((height, width, 3), dtype=np.uint8) |
| | | img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result |
| | | img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph |
| | | # Draw the graph based on the history of detected cards, then concatenate it with the result image |
| | | img_graph = draw_card_graph(exist_cards, card_pool, f_len) |
| | | img_save = np.zeros((height, width, 3), dtype=np.uint8) |
| | | img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result |
| | | img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph |
| | | else: |
| | | img_save = img_result |
| | | |
| | | # Display the result |
| | | if display: |
| | | cv2.imshow('result', img_save) |
| | | elapsed_display = (time.time() - start_display) * 1000 |
| | | if debug: |
| | | max_num_obj = max(max_num_obj, len(det_cards)) |
| | | for i in range(len(det_cards), max_num_obj): |
| | | cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8)) |
| | | |
| | | elapsed_ms = (time.time() - start_time) * 1000 |
| | | print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display)) |
| | | print('Elapsed time: %.2f ms' % elapsed_ms) |
| | | if out_path is not None: |
| | | vid_writer.write(img_save.astype(np.uint8)) |
| | | cv2.waitKey(1) |
| | |
| | | |
| | | def main(): |
| | | # Specify paths for all necessary files |
| | | test_path = os.path.abspath('test_file/test4.mp4') |
| | | #weight_path = 'backup/tiny_yolo_10_39500.weights' |
| | | #cfg_path = 'cfg/tiny_yolo_10.cfg' |
| | | #class_path = "data/obj_10.names" |
| | | weight_path = 'weights/second_general/tiny_yolo_final.weights' |
| | | cfg_path = 'cfg/tiny_yolo_old.cfg' |
| | | class_path = 'data/obj.names' |
| | | #test_path = os.path.abspath('test_file/test4.mp4') |
| | | test_path = None |
| | | out_dir = 'out' |
| | | if not os.path.isfile(test_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(weight_path): |
| | | print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(cfg_path): |
| | | print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | if not os.path.isfile(class_path): |
| | | print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | hash_size = 32 |
| | | highfreq_factor = 4 |
| | | |
| | | pck_path = os.path.abspath('card_pool_%d_%d.pck' % (hash_size, highfreq_factor)) |
| | | if os.path.isfile(pck_path): |
| | | card_pool = pd.read_pickle(pck_path) |
| | | else: |
| | | # Merge database for all cards, then calculate pHash values of each, store them |
| | | df_list = [] |
| | | for set_name in fetch_data.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) |
| | | df = fetch_data.load_all_cards_text(csv_name) |
| | | df_list.append(df) |
| | | card_pool = pd.concat(df_list, sort=True) |
| | | card_pool.reset_index(drop=True, inplace=True) |
| | | card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') |
| | | |
| | | ''' |
| | | df_list = [] |
| | | for set_name in fetch_data.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) |
| | | df = fetch_data.load_all_cards_text(csv_name) |
| | | df_list.append(df) |
| | | #print(df) |
| | | card_pool = pd.concat(df_list, sort=True) |
| | | card_pool.reset_index(drop=True, inplace=True) |
| | | card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore') |
| | | for hash_size in [8, 16, 32, 64]: |
| | | for highfreq_factor in [4, 8, 16, 32]: |
| | | pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor) |
| | | if not os.path.exists(pck_name): |
| | | print(pck_name) |
| | | calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | ''' |
| | | #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr') |
| | | #card_pool = fetch_data.load_all_cards_text(csv_name) |
| | | #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck') |
| | | #return |
| | | card_pool = pd.read_pickle('card_pool_32_4.pck') |
| | | #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')] |
| | | card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_size, highfreq_factor=highfreq_factor) |
| | | card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']] |
| | | |
| | | # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it |
| | | # significantly increases speed for subtracting hashes in the future. |
| | | card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten()) |
| | | |
| | | thresh_conf = 0.01 |
| | | thresh_nms = 0.8 |
| | | |
| | | # Setup |
| | | # Read class names from text file |
| | | with open(class_path, 'r') as f: |
| | | classes = [line.strip() for line in f.readlines()] |
| | | # Load up the neural net using the config and weights |
| | | net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) |
| | | net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) |
| | | net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) |
| | | |
| | | # Save the detection result if out_dir is provided |
| | | if out_dir is None or out_dir == '': |
| | | out_path = None |
| | | else: |
| | | f_name = os.path.split(test_path)[1] |
| | | out_path = out_dir + '/' + f_name[:f_name.find('.')] + '.avi' |
| | | # Check if test file is image or video |
| | | test_ext = test_path[test_path.find('.') + 1:] |
| | | |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | img = cv2.imread(test_path) |
| | | detect_frame(net, classes, img, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms) |
| | | else: |
| | | # If the test file isn't given, use webcam to capture video |
| | | if test_path is None: |
| | | capture = cv2.VideoCapture(0) |
| | | detect_video(net, classes, capture, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms, |
| | | display=True, debug=False) |
| | | detect_video(capture, card_pool, out_path='%s/result.avi' % out_dir, display=True, show_graph=True, debug=False) |
| | | capture.release() |
| | | else: |
| | | # Save the detection result if out_dir is provided |
| | | if out_dir is None or out_dir == '': |
| | | out_path = None |
| | | else: |
| | | f_name = os.path.split(test_path)[1] |
| | | out_path = '%s/%s.avi' % (out_dir, f_name[:f_name.find('.')]) |
| | | |
| | | if not os.path.isfile(test_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | return |
| | | # Check if test file is image or video |
| | | test_ext = test_path[test_path.find('.') + 1:] |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | # Test file is an image |
| | | img = cv2.imread(test_path) |
| | | detect_frame(img, card_pool, out_path=out_path) |
| | | else: |
| | | # Test file is a video |
| | | capture = cv2.VideoCapture(test_path) |
| | | detect_video(capture, card_pool, out_path=out_path, display=True, show_graph=True, debug=False) |
| | | capture.release() |
| | | pass |
| | | |
| | | |