idk, probably something changed
| | |
| | | return layer; |
| | | } |
| | | |
| | | void forward_crop_layer(const crop_layer layer, float *input) |
| | | void forward_crop_layer(const crop_layer layer, int train, float *input) |
| | | { |
| | | int i,j,c,b,row,col; |
| | | int index; |
| | | int count = 0; |
| | | int flip = (layer.flip && rand()%2); |
| | | int dh = rand()%(layer.h - layer.crop_height); |
| | | int dw = rand()%(layer.w - layer.crop_width); |
| | | int dh = rand()%(layer.h - layer.crop_height + 1); |
| | | int dw = rand()%(layer.w - layer.crop_width + 1); |
| | | if(!train){ |
| | | flip = 0; |
| | | dh = (layer.h - layer.crop_height)/2; |
| | | dw = (layer.w - layer.crop_width)/2; |
| | | } |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = 0; i < layer.crop_height; ++i){ |
| | |
| | | |
| | | image get_crop_image(crop_layer layer); |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip); |
| | | void forward_crop_layer(const crop_layer layer, float *input); |
| | | void forward_crop_layer(const crop_layer layer, int train, float *input); |
| | | |
| | | #ifdef GPU |
| | | void forward_crop_layer_gpu(crop_layer layer, float *input); |
| | | void forward_crop_layer_gpu(crop_layer layer, int train, float *input); |
| | | #endif |
| | | |
| | | #endif |
| | |
| | | output[count] = input[index]; |
| | | } |
| | | |
| | | extern "C" void forward_crop_layer_gpu(crop_layer layer, float *input) |
| | | extern "C" void forward_crop_layer_gpu(crop_layer layer, int train, float *input) |
| | | { |
| | | int flip = (layer.flip && rand()%2); |
| | | int dh = rand()%(layer.h - layer.crop_height); |
| | | int dw = rand()%(layer.w - layer.crop_width); |
| | | int dh = rand()%(layer.h - layer.crop_height + 1); |
| | | int dw = rand()%(layer.w - layer.crop_width + 1); |
| | | if(!train){ |
| | | flip = 0; |
| | | dh = (layer.h - layer.crop_height)/2; |
| | | dw = (layer.w - layer.crop_width)/2; |
| | | } |
| | | int size = layer.batch*layer.c*layer.crop_width*layer.crop_height; |
| | | |
| | | dim3 dimBlock(BLOCK, 1, 1); |
| | |
| | | int gpu_index = 0; |
| | | |
| | | #ifdef GPU |
| | | |
| | | #include "cuda.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | #include <stdlib.h> |
| | | |
| | | int gpu_index = 0; |
| | | |
| | | void check_error(cudaError_t status) |
| | | { |
| | |
| | | check_error(status); |
| | | } |
| | | |
| | | |
| | | #endif |
| | |
| | | #ifndef CUDA_H |
| | | #define CUDA_H |
| | | |
| | | extern int gpu_index; |
| | | |
| | | #ifdef GPU |
| | | |
| | | #define BLOCK 256 |
| | | |
| | | #include "cuda_runtime.h" |
| | | #include "cublas_v2.h" |
| | | |
| | | extern int gpu_index; |
| | | |
| | | void check_error(cudaError_t status); |
| | | cublasHandle_t blas_handle(); |
| | | float *cuda_make_array(float *x, int n); |
| | |
| | | dim3 cuda_gridsize(size_t n); |
| | | |
| | | #endif |
| | | #endif |
| | |
| | | void train_imagenet(char *cfgfile) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg(cfgfile); |
| | | //test_learn_bias(*(convolutional_layer *)net.layers[1]); |
| | | //set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 3072; |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | //normalize_data_rows(train); |
| | | //translate_data_rows(train, -128); |
| | | //scale_data_rows(train, 1./128); |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/vgg_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | |
| | | } |
| | | free_image(im); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | void test_dog(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | | image im = load_image_color("data/dog.jpg", 224, 224); |
| | | translate_image(im, -128); |
| | | print_image(im); |
| | | float *X = im.data; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | float *predictions = network_predict(net, X); |
| | | image crop = get_network_image_layer(net, 0); |
| | | //show_image(crop, "cropped"); |
| | | // print_image(crop); |
| | | //show_image(im, "orig"); |
| | | float * inter = get_network_output(net); |
| | | pm(1000, 1, inter); |
| | | //cvWaitKey(0); |
| | | } |
| | | |
| | | void test_imagenet(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | //imgs=1; |
| | | srand(2222222); |
| | | int i = 0; |
| | |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | z_normalize_image(im); |
| | | translate_image(im, -128); |
| | | //scale_image(im, 1/128.); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | |
| | | } |
| | | |
| | | /* |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | */ |
| | | } |
| | | */ |
| | | |
| | | void test_ensemble() |
| | | { |
| | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | image im = load_image_color("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0, 0); |
| | |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void test_convolutional_layer() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | |
| | | bias_output_gpu(layer); |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "biased output"); |
| | | } |
| | | #endif |
| | | |
| | | void test_correct_nist() |
| | | { |
| | |
| | | gpu_index = -1; |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | |
| | | } |
| | | |
| | | /* |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | |
| | | void test_client() |
| | | { |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | */ |
| | | void test_client() |
| | | { |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | */ |
| | | |
| | | void del_arg(int argc, char **argv, int index) |
| | | { |
| | |
| | | |
| | | if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | //else if(0==strcmp(argv[1], "server")) run_server(); |
| | | |
| | | #ifdef GPU |
| | |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
| | |
| | | { |
| | | struct load_args a = *(struct load_args*)ptr; |
| | | *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w); |
| | | translate_data_rows(*a.d, -144); |
| | | translate_data_rows(*a.d, -128); |
| | | scale_data_rows(*a.d, 1./128); |
| | | free(ptr); |
| | | return 0; |
| | |
| | | exit(0); |
| | | } |
| | | if(h && w ){ |
| | | IplImage *resized = resizeImage(src, h, w, 1); |
| | | IplImage *resized = resizeImage(src, h, w, 0); |
| | | cvReleaseImage(&src); |
| | | src = resized; |
| | | } |
| | |
| | | |
| | | void print_image(image m) |
| | | { |
| | | int i; |
| | | for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]); |
| | | int i, j, k; |
| | | for(i =0 ; i < m.c; ++i){ |
| | | for(j =0 ; j < m.h; ++j){ |
| | | for(k = 0; k < m.w; ++k){ |
| | | printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); |
| | | if(k > 30) break; |
| | | } |
| | | printf("\n"); |
| | | if(j > 30) break; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | image collapse_images_vert(image *ims, int n) |
| | | { |
| | | int color = 1; |
| | |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | forward_crop_layer(layer, train, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == COST){ |
| | |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | return get_network_image_layer(net, i-1); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return get_crop_image(layer); |
| | |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer_gpu(layer, input); |
| | | forward_crop_layer_gpu(layer, train, input); |
| | | input = layer.output_gpu; |
| | | } |
| | | //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time)); |
| | |
| | | { |
| | | int i,j; |
| | | for(i =0 ; i < M; ++i){ |
| | | printf("%d ", i+1); |
| | | for(j = 0; j < N; ++j){ |
| | | printf("%10.6f, ", A[i*N+j]); |
| | | } |