24 files modified
6 files added
| | |
| | | GPU=0 |
| | | OPENCV=0 |
| | | GPU=1 |
| | | OPENCV=1 |
| | | DEBUG=0 |
| | | |
| | | ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 |
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o rnn.o |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o |
| | | ifeq ($(GPU), 1) |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o yolo_kernels.o coco_kernels.o |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o yolo_kernels.o |
| | | endif |
| | | |
| | | OBJS = $(addprefix $(OBJDIR), $(OBJ)) |
| | |
| | | for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; |
| | | } |
| | | |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta) |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | if(fabs(diff) > 1) delta[i] = diff; |
| | | else delta[i] = (diff > 0) ? 1 : -1; |
| | | float abs_val = fabs(diff); |
| | | if(abs_val < 1) { |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | else { |
| | | error[i] = 2*abs_val - 1; |
| | | delta[i] = (diff < 0) ? -1 : 1; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | float diff = truth[i] - pred[i]; |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | } |
| | | |
| | |
| | | float dot_cpu(int N, float *X, int INCX, float *Y, int INCY); |
| | | void test_gpu_blas(); |
| | | void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out); |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta); |
| | | |
| | | void mean_cpu(float *x, int batch, int filters, int spatial, float *mean); |
| | | void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance); |
| | |
| | | void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta); |
| | | void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta); |
| | | |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void l2_cpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | |
| | | #ifdef GPU |
| | | void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY); |
| | | void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY); |
| | |
| | | void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance); |
| | | void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean); |
| | | void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out); |
| | | void smooth_l1_gpu(int n, float *pred, float *truth, float *delta); |
| | | void scale_bias_gpu(float *output, float *biases, int batch, int n, int size); |
| | | void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates); |
| | | void scale_bias_gpu(float *output, float *biases, int batch, int n, int size); |
| | | |
| | | void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void l2_gpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | #endif |
| | | #endif |
| | |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta) |
| | | __global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(i < n){ |
| | | float diff = truth[i] - pred[i]; |
| | | if(abs(diff) > 1) delta[i] = diff; |
| | | else delta[i] = (diff > 0) ? 1 : -1; |
| | | float abs_val = abs(diff); |
| | | if(abs_val < 1) { |
| | | error[i] = diff * diff; |
| | | delta[i] = diff; |
| | | } |
| | | else { |
| | | error[i] = 2*abs_val - 1; |
| | | delta[i] = (diff < 0) ? -1 : 1; |
| | | } |
| | | } |
| | | } |
| | | |
| | | extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta) |
| | | extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | smooth_l1_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta); |
| | | smooth_l1_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void l2_kernel(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(i < n){ |
| | | float diff = truth[i] - pred[i]; |
| | | error[i] = diff * diff; //I know this is technically wrong, deal with it. |
| | | delta[i] = diff; |
| | | } |
| | | } |
| | | |
| | | extern "C" void l2_gpu(int n, float *pred, float *truth, float *delta, float *error) |
| | | { |
| | | l2_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| New file |
| | |
| | | #include "network.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "option_list.h" |
| | | #include "blas.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | void train_cifar(char *cfgfile, char *weightfile) |
| | | { |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | int classes = 10; |
| | | int N = 50000; |
| | | |
| | | char **labels = get_labels("data/cifar/labels.txt"); |
| | | int epoch = (*net.seen)/N; |
| | | data train = load_all_cifar10(); |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | clock_t time=clock(); |
| | | |
| | | float loss = train_network_sgd(net, train, 1); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | free_network(net); |
| | | free_ptrs((void**)labels, classes); |
| | | free(base); |
| | | free_data(train); |
| | | } |
| | | |
| | | void test_cifar(char *filename, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(filename); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_top5 = 0; |
| | | data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin"); |
| | | |
| | | time=clock(); |
| | | |
| | | float *acc = network_accuracies(net, test, 2); |
| | | avg_acc += acc[0]; |
| | | avg_top5 += acc[1]; |
| | | printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows); |
| | | free_data(test); |
| | | } |
| | | |
| | | void run_cifar(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights); |
| | | } |
| | | |
| | | |
| | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.min = net.w; |
| | | args.max = net.max_crop; |
| | | args.size = net.w; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = imgs; |
| | |
| | | load_thread = load_data_in_thread(args); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | /* |
| | | int u; |
| | | for(u = 0; u < net.batch; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | */ |
| | | |
| | | float loss = train_network(net, train); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(*net.seen%1000 == 0){ |
| | | if(*net.seen%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = num; |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.type = OLD_CLASSIFICATION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | for(i = 1; i <= splits; ++i){ |
| | |
| | | break; |
| | | } |
| | | } |
| | | image im = load_image_color(paths[i], 256, 256); |
| | | int w = net.w; |
| | | int h = net.h; |
| | | image im = load_image_color(paths[i], w, h); |
| | | int shift = 32; |
| | | image images[10]; |
| | | images[0] = crop_image(im, -16, -16, 256, 256); |
| | | images[1] = crop_image(im, 16, -16, 256, 256); |
| | | images[2] = crop_image(im, 0, 0, 256, 256); |
| | | images[3] = crop_image(im, -16, 16, 256, 256); |
| | | images[4] = crop_image(im, 16, 16, 256, 256); |
| | | images[0] = crop_image(im, -shift, -shift, w, h); |
| | | images[1] = crop_image(im, shift, -shift, w, h); |
| | | images[2] = crop_image(im, 0, 0, w, h); |
| | | images[3] = crop_image(im, -shift, shift, w, h); |
| | | images[4] = crop_image(im, shift, shift, w, h); |
| | | flip_image(im); |
| | | images[5] = crop_image(im, -16, -16, 256, 256); |
| | | images[6] = crop_image(im, 16, -16, 256, 256); |
| | | images[7] = crop_image(im, 0, 0, 256, 256); |
| | | images[8] = crop_image(im, -16, 16, 256, 256); |
| | | images[9] = crop_image(im, 16, 16, 256, 256); |
| | | images[5] = crop_image(im, -shift, -shift, w, h); |
| | | images[6] = crop_image(im, shift, -shift, w, h); |
| | | images[7] = crop_image(im, 0, 0, w, h); |
| | | images[8] = crop_image(im, -shift, shift, w, h); |
| | | images[9] = crop_image(im, shift, shift, w, h); |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | for(j = 0; j < 10; ++j){ |
| | | float *p = network_predict(net, images[j].data); |
| | |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_full(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | resize_network(&net, im.w, im.h); |
| | | //show_image(im, "orig"); |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, im.data); |
| | | |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | |
| | | void validate_classifier_single(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image resized = resize_min(im, net.w); |
| | | image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); |
| | | //show_image(im, "orig"); |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, crop.data); |
| | | |
| | | free_image(im); |
| | | free_image(resized); |
| | | free_image(crop); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_multi(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | int scales[] = {224, 256, 384, 480, 640}; |
| | | int scales[] = {224, 256, 384, 480, 512}; |
| | | int nscales = sizeof(scales)/sizeof(scales[0]); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | args.m = 0; |
| | | args.labels = 0; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.type = OLD_CLASSIFICATION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | for(curr = net.batch; curr < m; curr += net.batch){ |
| | |
| | | |
| | | time=clock(); |
| | | matrix pred = network_predict_data(net, val); |
| | | |
| | | |
| | | int i, j; |
| | | if (target_layer >= 0){ |
| | | //layer l = net.layers[target_layer]; |
| | |
| | | else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); |
| | | } |
| | | |
| | | |
| | |
| | | void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename); |
| | | static void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, char* filename) |
| | | { |
| | | #if defined(OPENCV) && defined(GPU) |
| | | #if defined(OPENCV) |
| | | demo_coco(cfgfile, weightfile, thresh, cam_index, filename); |
| | | #else |
| | | fprintf(stderr, "Need to compile with GPU and OpenCV for demo.\n"); |
| | | fprintf(stderr, "Need to compile with OpenCV for demo.\n"); |
| | | #endif |
| | | } |
| | | |
| New file |
| | |
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "image.h" |
| | | #include <sys/time.h> |
| | | |
| | | #define FRAMES 1 |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui.hpp" |
| | | #include "opencv2/imgproc/imgproc.hpp" |
| | | void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness); |
| | | |
| | | extern char *coco_classes[]; |
| | | extern image coco_labels[]; |
| | | |
| | | static float **probs; |
| | | static box *boxes; |
| | | static network net; |
| | | static image in ; |
| | | static image in_s ; |
| | | static image det ; |
| | | static image det_s; |
| | | static image disp ; |
| | | static CvCapture * cap; |
| | | static float fps = 0; |
| | | static float demo_thresh = 0; |
| | | |
| | | static float *predictions[FRAMES]; |
| | | static int demo_index = 0; |
| | | static image images[FRAMES]; |
| | | static float *avg; |
| | | |
| | | void *fetch_in_thread_coco(void *ptr) |
| | | { |
| | | in = get_image_from_stream(cap); |
| | | in_s = resize_image(in, net.w, net.h); |
| | | return 0; |
| | | } |
| | | |
| | | void *detect_in_thread_coco(void *ptr) |
| | | { |
| | | float nms = .4; |
| | | |
| | | detection_layer l = net.layers[net.n-1]; |
| | | float *X = det_s.data; |
| | | float *prediction = network_predict(net, X); |
| | | |
| | | memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float)); |
| | | mean_arrays(predictions, FRAMES, l.outputs, avg); |
| | | |
| | | free_image(det_s); |
| | | convert_coco_detections(avg, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0); |
| | | if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | printf("\033[2J"); |
| | | printf("\033[1;1H"); |
| | | printf("\nFPS:%.0f\n",fps); |
| | | printf("Objects:\n\n"); |
| | | |
| | | images[demo_index] = det; |
| | | det = images[(demo_index + FRAMES/2 + 1)%FRAMES]; |
| | | demo_index = (demo_index + 1)%FRAMES; |
| | | |
| | | draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, coco_classes, coco_labels, 80); |
| | | return 0; |
| | | } |
| | | |
| | | void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename) |
| | | { |
| | | demo_thresh = thresh; |
| | | printf("YOLO demo\n"); |
| | | net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | |
| | | srand(2222222); |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | } |
| | | |
| | | if(!cap) error("Couldn't connect to webcam.\n"); |
| | | cvNamedWindow("YOLO", CV_WINDOW_NORMAL); |
| | | cvResizeWindow("YOLO", 512, 512); |
| | | |
| | | detection_layer l = net.layers[net.n-1]; |
| | | int j; |
| | | |
| | | avg = (float *) calloc(l.outputs, sizeof(float)); |
| | | for(j = 0; j < FRAMES; ++j) predictions[j] = (float *) calloc(l.outputs, sizeof(float)); |
| | | for(j = 0; j < FRAMES; ++j) images[j] = make_image(1,1,3); |
| | | |
| | | boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box)); |
| | | probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *)); |
| | | |
| | | pthread_t fetch_thread; |
| | | pthread_t detect_thread; |
| | | |
| | | fetch_in_thread_coco(0); |
| | | det = in; |
| | | det_s = in_s; |
| | | |
| | | fetch_in_thread_coco(0); |
| | | detect_in_thread_coco(0); |
| | | disp = det; |
| | | det = in; |
| | | det_s = in_s; |
| | | |
| | | for(j = 0; j < FRAMES/2; ++j){ |
| | | fetch_in_thread_coco(0); |
| | | detect_in_thread_coco(0); |
| | | disp = det; |
| | | det = in; |
| | | det_s = in_s; |
| | | } |
| | | |
| | | while(1){ |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | if(pthread_create(&fetch_thread, 0, fetch_in_thread_coco, 0)) error("Thread creation failed"); |
| | | if(pthread_create(&detect_thread, 0, detect_in_thread_coco, 0)) error("Thread creation failed"); |
| | | show_image(disp, "YOLO"); |
| | | save_image(disp, "YOLO"); |
| | | free_image(disp); |
| | | cvWaitKey(10); |
| | | pthread_join(fetch_thread, 0); |
| | | pthread_join(detect_thread, 0); |
| | | |
| | | disp = det; |
| | | det = in; |
| | | det_s = in_s; |
| | | |
| | | gettimeofday(&tval_after, NULL); |
| | | timersub(&tval_after, &tval_before, &tval_result); |
| | | float curr = 1000000.f/((long int)tval_result.tv_usec); |
| | | fps = .9*fps + .1*curr; |
| | | } |
| | | } |
| | | #else |
| | | void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index){ |
| | | fprintf(stderr, "YOLO-COCO demo needs OpenCV for webcam images.\n"); |
| | | } |
| | | #endif |
| | | |
| | |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | void swap_binary(convolutional_layer l) |
| | | void swap_binary(convolutional_layer *l) |
| | | { |
| | | float *swap = l.filters_gpu; |
| | | l.filters_gpu = l.binary_filters_gpu; |
| | | l.binary_filters_gpu = swap; |
| | | float *swap = l->filters_gpu; |
| | | l->filters_gpu = l->binary_filters_gpu; |
| | | l->binary_filters_gpu = swap; |
| | | } |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | |
| | | fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
| | | if(l.binary){ |
| | | binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu); |
| | | swap_binary(l); |
| | | swap_binary(&l); |
| | | } |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n); |
| | | |
| | | activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation); |
| | | if(l.binary) swap_binary(l); |
| | | if(l.binary) swap_binary(&l); |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | if(l.binary) swap_binary(l); |
| | | if(l.binary) swap_binary(&l); |
| | | float * a = l.filters_gpu; |
| | | float * b = l.delta_gpu; |
| | | float * c = l.col_image_gpu; |
| | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | if(l.binary) swap_binary(l); |
| | | if(l.binary) swap_binary(&l); |
| | | } |
| | | } |
| | | } |
| | |
| | | l.outputs = inputs; |
| | | l.cost_type = cost_type; |
| | | l.delta = calloc(inputs*batch, sizeof(float)); |
| | | l.output = calloc(1, sizeof(float)); |
| | | l.output = calloc(inputs*batch, sizeof(float)); |
| | | l.cost = calloc(1, sizeof(float)); |
| | | #ifdef GPU |
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch); |
| | | l.delta_gpu = cuda_make_array(l.output, inputs*batch); |
| | | l.output_gpu = cuda_make_array(l.delta, inputs*batch); |
| | | #endif |
| | | return l; |
| | | } |
| | |
| | | l->inputs = inputs; |
| | | l->outputs = inputs; |
| | | l->delta = realloc(l->delta, inputs*l->batch*sizeof(float)); |
| | | l->output = realloc(l->output, inputs*l->batch*sizeof(float)); |
| | | #ifdef GPU |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch); |
| | | l->output_gpu = cuda_make_array(l->output, inputs*l->batch); |
| | | #endif |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | if(l.cost_type == SMOOTH){ |
| | | smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta); |
| | | smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output); |
| | | } else { |
| | | copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1); |
| | | axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1); |
| | | l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output); |
| | | } |
| | | *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1); |
| | | //printf("cost: %f\n", *l.output); |
| | | l.cost[0] = sum_array(l.output, l.batch*l.inputs); |
| | | } |
| | | |
| | | void backward_cost_layer(const cost_layer l, network_state state) |
| | |
| | | } |
| | | |
| | | if(l.cost_type == SMOOTH){ |
| | | smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu); |
| | | smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu); |
| | | } else { |
| | | copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1); |
| | | axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1); |
| | | l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu); |
| | | } |
| | | |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
| | | *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1); |
| | | cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs); |
| | | l.cost[0] = sum_array(l.output, l.batch*l.inputs); |
| | | } |
| | | |
| | | void backward_cost_layer_gpu(const cost_layer l, network_state state) |
| New file |
| | |
| | | #include "crnn_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | static void increment_layer(layer *l, int steps) |
| | | { |
| | | int num = l->outputs*l->batch*steps; |
| | | l->output += num; |
| | | l->delta += num; |
| | | l->x += num; |
| | | l->x_norm += num; |
| | | |
| | | #ifdef GPU |
| | | l->output_gpu += num; |
| | | l->delta_gpu += num; |
| | | l->x_gpu += num; |
| | | l->x_norm_gpu += num; |
| | | #endif |
| | | } |
| | | |
| | | layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int steps, ACTIVATION activation, int batch_normalize) |
| | | { |
| | | fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters); |
| | | batch = batch / steps; |
| | | layer l = {0}; |
| | | l.batch = batch; |
| | | l.type = CRNN; |
| | | l.steps = steps; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.out_h = h; |
| | | l.out_w = w; |
| | | l.out_c = output_filters; |
| | | l.inputs = h*w*c; |
| | | l.hidden = h * w * hidden_filters; |
| | | l.outputs = l.out_h * l.out_w * l.out_c; |
| | | |
| | | l.state = calloc(l.hidden*batch*(steps+1), sizeof(float)); |
| | | |
| | | l.input_layer = malloc(sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.input_layer) = make_convolutional_layer(batch*steps, h, w, c, hidden_filters, 3, 1, 1, activation, batch_normalize, 0); |
| | | l.input_layer->batch = batch; |
| | | |
| | | l.self_layer = malloc(sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.self_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, hidden_filters, 3, 1, 1, activation, batch_normalize, 0); |
| | | l.self_layer->batch = batch; |
| | | |
| | | l.output_layer = malloc(sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.output_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, output_filters, 3, 1, 1, activation, batch_normalize, 0); |
| | | l.output_layer->batch = batch; |
| | | |
| | | l.output = l.output_layer->output; |
| | | l.delta = l.output_layer->delta; |
| | | |
| | | #ifdef GPU |
| | | l.state_gpu = cuda_make_array(l.state, l.hidden*batch*(steps+1)); |
| | | l.output_gpu = l.output_layer->output_gpu; |
| | | l.delta_gpu = l.output_layer->delta_gpu; |
| | | #endif |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay); |
| | | } |
| | | |
| | | void forward_crnn_layer(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); |
| | | fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); |
| | | fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); |
| | | if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = state.input; |
| | | forward_convolutional_layer(input_layer, s); |
| | | |
| | | s.input = l.state; |
| | | forward_convolutional_layer(self_layer, s); |
| | | |
| | | float *old_state = l.state; |
| | | if(state.train) l.state += l.hidden*l.batch; |
| | | if(l.shortcut){ |
| | | copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); |
| | | }else{ |
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
| | | } |
| | | axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); |
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); |
| | | |
| | | s.input = l.state; |
| | | forward_convolutional_layer(output_layer, s); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | increment_layer(&input_layer, 1); |
| | | increment_layer(&self_layer, 1); |
| | | increment_layer(&output_layer, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_crnn_layer(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | |
| | | increment_layer(&input_layer, l.steps-1); |
| | | increment_layer(&self_layer, l.steps-1); |
| | | increment_layer(&output_layer, l.steps-1); |
| | | |
| | | l.state += l.hidden*l.batch*l.steps; |
| | | for (i = l.steps-1; i >= 0; --i) { |
| | | copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); |
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); |
| | | |
| | | s.input = l.state; |
| | | s.delta = self_layer.delta; |
| | | backward_convolutional_layer(output_layer, s); |
| | | |
| | | l.state -= l.hidden*l.batch; |
| | | /* |
| | | if(i > 0){ |
| | | copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); |
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); |
| | | }else{ |
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
| | | } |
| | | */ |
| | | |
| | | s.input = l.state; |
| | | s.delta = self_layer.delta - l.hidden*l.batch; |
| | | if (i == 0) s.delta = 0; |
| | | backward_convolutional_layer(self_layer, s); |
| | | |
| | | copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); |
| | | if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); |
| | | s.input = state.input + i*l.inputs*l.batch; |
| | | if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; |
| | | else s.delta = 0; |
| | | backward_convolutional_layer(input_layer, s); |
| | | |
| | | increment_layer(&input_layer, -1); |
| | | increment_layer(&self_layer, -1); |
| | | increment_layer(&output_layer, -1); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_crnn_layer(layer l) |
| | | { |
| | | pull_convolutional_layer(*(l.input_layer)); |
| | | pull_convolutional_layer(*(l.self_layer)); |
| | | pull_convolutional_layer(*(l.output_layer)); |
| | | } |
| | | |
| | | void push_crnn_layer(layer l) |
| | | { |
| | | push_convolutional_layer(*(l.input_layer)); |
| | | push_convolutional_layer(*(l.self_layer)); |
| | | push_convolutional_layer(*(l.output_layer)); |
| | | } |
| | | |
| | | void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay); |
| | | } |
| | | |
| | | void forward_crnn_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); |
| | | fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); |
| | | fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); |
| | | if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = state.input; |
| | | forward_convolutional_layer_gpu(input_layer, s); |
| | | |
| | | s.input = l.state_gpu; |
| | | forward_convolutional_layer_gpu(self_layer, s); |
| | | |
| | | float *old_state = l.state_gpu; |
| | | if(state.train) l.state_gpu += l.hidden*l.batch; |
| | | if(l.shortcut){ |
| | | copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); |
| | | }else{ |
| | | fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); |
| | | } |
| | | axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); |
| | | axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); |
| | | |
| | | s.input = l.state_gpu; |
| | | forward_convolutional_layer_gpu(output_layer, s); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | increment_layer(&input_layer, 1); |
| | | increment_layer(&self_layer, 1); |
| | | increment_layer(&output_layer, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_crnn_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | increment_layer(&input_layer, l.steps - 1); |
| | | increment_layer(&self_layer, l.steps - 1); |
| | | increment_layer(&output_layer, l.steps - 1); |
| | | l.state_gpu += l.hidden*l.batch*l.steps; |
| | | for (i = l.steps-1; i >= 0; --i) { |
| | | copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); |
| | | axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); |
| | | |
| | | s.input = l.state_gpu; |
| | | s.delta = self_layer.delta_gpu; |
| | | backward_convolutional_layer_gpu(output_layer, s); |
| | | |
| | | l.state_gpu -= l.hidden*l.batch; |
| | | |
| | | s.input = l.state_gpu; |
| | | s.delta = self_layer.delta_gpu - l.hidden*l.batch; |
| | | if (i == 0) s.delta = 0; |
| | | backward_convolutional_layer_gpu(self_layer, s); |
| | | |
| | | copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); |
| | | if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); |
| | | s.input = state.input + i*l.inputs*l.batch; |
| | | if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; |
| | | else s.delta = 0; |
| | | backward_convolutional_layer_gpu(input_layer, s); |
| | | |
| | | increment_layer(&input_layer, -1); |
| | | increment_layer(&self_layer, -1); |
| | | increment_layer(&output_layer, -1); |
| | | } |
| | | } |
| | | #endif |
| New file |
| | |
| | | |
| | | #ifndef CRNN_LAYER_H |
| | | #define CRNN_LAYER_H |
| | | |
| | | #include "activations.h" |
| | | #include "layer.h" |
| | | #include "network.h" |
| | | |
| | | layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int steps, ACTIVATION activation, int batch_normalize); |
| | | |
| | | void forward_crnn_layer(layer l, network_state state); |
| | | void backward_crnn_layer(layer l, network_state state); |
| | | void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay); |
| | | |
| | | #ifdef GPU |
| | | void forward_crnn_layer_gpu(layer l, network_state state); |
| | | void backward_crnn_layer_gpu(layer l, network_state state); |
| | | void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay); |
| | | void push_crnn_layer(layer l); |
| | | void pull_crnn_layer(layer l); |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | |
| | | extern void run_compare(int argc, char **argv); |
| | | extern void run_classifier(int argc, char **argv); |
| | | extern void run_char_rnn(int argc, char **argv); |
| | | extern void run_vid_rnn(int argc, char **argv); |
| | | extern void run_tag(int argc, char **argv); |
| | | extern void run_cifar(int argc, char **argv); |
| | | |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yolo")){ |
| | | run_yolo(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "cifar")){ |
| | | run_cifar(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "rnn")){ |
| | | run_char_rnn(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "vid")){ |
| | | run_vid_rnn(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "classifier")){ |
| | | run_classifier(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "tag")){ |
| | | run_tag(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "compare")){ |
| | | run_compare(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "dice")){ |
| | |
| | | return X; |
| | | } |
| | | |
| | | matrix load_image_cropped_paths(char **paths, int n, int min, int max, int size) |
| | | { |
| | | int i; |
| | | matrix X; |
| | | X.rows = n; |
| | | X.vals = calloc(X.rows, sizeof(float*)); |
| | | X.cols = 0; |
| | | |
| | | for(i = 0; i < n; ++i){ |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image crop = random_crop_image(im, min, max, size); |
| | | int flip = rand_r(&data_seed)%2; |
| | | if (flip) flip_image(crop); |
| | | free_image(im); |
| | | X.vals[i] = crop.data; |
| | | X.cols = crop.h*crop.w*crop.c; |
| | | } |
| | | return X; |
| | | } |
| | | |
| | | |
| | | box_label *read_boxes(char *filename, int *n) |
| | | { |
| | | box_label *boxes = calloc(1, sizeof(box_label)); |
| | |
| | | return y; |
| | | } |
| | | |
| | | matrix load_tags_paths(char **paths, int n, int k) |
| | | { |
| | | matrix y = make_matrix(n, k); |
| | | int i; |
| | | int count = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | char *label = find_replace(paths[i], "imgs", "labels"); |
| | | label = find_replace(label, "_iconl.jpeg", ".txt"); |
| | | FILE *file = fopen(label, "r"); |
| | | if(!file){ |
| | | label = find_replace(label, "labels", "labels2"); |
| | | file = fopen(label, "r"); |
| | | if(!file) continue; |
| | | } |
| | | ++count; |
| | | int tag; |
| | | while(fscanf(file, "%d", &tag) == 1){ |
| | | if(tag < k){ |
| | | y.vals[i][tag] = 1; |
| | | } |
| | | } |
| | | fclose(file); |
| | | } |
| | | printf("%d/%d\n", count, n); |
| | | return y; |
| | | } |
| | | |
| | | char **get_labels(char *filename) |
| | | { |
| | | list *plist = get_paths(filename); |
| | |
| | | |
| | | //printf("Loading data: %d\n", rand_r(&data_seed)); |
| | | load_args a = *(struct load_args*)ptr; |
| | | if (a.type == CLASSIFICATION_DATA){ |
| | | if (a.type == OLD_CLASSIFICATION_DATA){ |
| | | *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
| | | } else if (a.type == CLASSIFICATION_DATA){ |
| | | *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size); |
| | | } else if (a.type == DETECTION_DATA){ |
| | | *a.d = load_data_detection(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background); |
| | | } else if (a.type == WRITING_DATA){ |
| | |
| | | } else if (a.type == IMAGE_DATA){ |
| | | *(a.im) = load_image_color(a.path, 0, 0); |
| | | *(a.resized) = resize_image(*(a.im), a.w, a.h); |
| | | } else if (a.type == TAG_DATA){ |
| | | *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size); |
| | | //*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
| | | } |
| | | free(ptr); |
| | | return 0; |
| | |
| | | return d; |
| | | } |
| | | |
| | | data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_cropped_paths(paths, n, min, max, size); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | if(m) free(paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d = {0}; |
| | | d.w = size; |
| | | d.h = size; |
| | | d.shallow = 0; |
| | | d.X = load_image_cropped_paths(paths, n, min, max, size); |
| | | d.y = load_tags_paths(paths, n, k); |
| | | if(m) free(paths); |
| | | return d; |
| | | } |
| | | |
| | | matrix concat_matrix(matrix m1, matrix m2) |
| | | { |
| | | int i, count = 0; |
| | |
| | | X.vals[i][j] = (double)bytes[j+1]; |
| | | } |
| | | } |
| | | translate_data_rows(d, -128); |
| | | scale_data_rows(d, 1./128); |
| | | //translate_data_rows(d, -128); |
| | | scale_data_rows(d, 1./255); |
| | | //normalize_data_rows(d); |
| | | fclose(fp); |
| | | return d; |
| | |
| | | |
| | | for(b = 0; b < 5; ++b){ |
| | | char buff[256]; |
| | | sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1); |
| | | sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1); |
| | | FILE *fp = fopen(buff, "rb"); |
| | | if(!fp) file_error(buff); |
| | | for(i = 0; i < 10000; ++i){ |
| | |
| | | fclose(fp); |
| | | } |
| | | //normalize_data_rows(d); |
| | | translate_data_rows(d, -128); |
| | | scale_data_rows(d, 1./128); |
| | | //translate_data_rows(d, -128); |
| | | scale_data_rows(d, 1./255); |
| | | return d; |
| | | } |
| | | |
| | |
| | | } data; |
| | | |
| | | typedef enum { |
| | | CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA |
| | | CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA |
| | | } data_type; |
| | | |
| | | typedef struct load_args{ |
| | |
| | | int nh; |
| | | int nw; |
| | | int num_boxes; |
| | | int min, max, size; |
| | | int classes; |
| | | int background; |
| | | float jitter; |
| | |
| | | data load_data_captcha_encode(char **paths, int n, int m, int w, int h); |
| | | data load_data(char **paths, int n, int m, char **labels, int k, int w, int h); |
| | | data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background); |
| | | data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size); |
| | | data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size); |
| | | |
| | | box_label *read_boxes(char *filename, int *n); |
| | | data load_cifar10_data(char *filename); |
| | |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/imgproc/imgproc_c.h" |
| | | #endif |
| | | |
| | | #define STB_IMAGE_IMPLEMENTATION |
| | | #include "stb_image.h" |
| | | #define STB_IMAGE_WRITE_IMPLEMENTATION |
| | |
| | | } |
| | | |
| | | #ifdef OPENCV |
| | | image get_image_from_stream(CvCapture *cap) |
| | | { |
| | | IplImage* src = cvQueryFrame(cap); |
| | | image im = ipl_to_image(src); |
| | | rgbgr_image(im); |
| | | return im; |
| | | } |
| | | #endif |
| | | |
| | | #ifdef OPENCV |
| | | void save_image_jpg(image p, char *name) |
| | | { |
| | | image copy = copy_image(p); |
| | |
| | | return cropped; |
| | | } |
| | | |
| | | image resize_min(image im, int min) |
| | | { |
| | | int w = im.w; |
| | | int h = im.h; |
| | | if(w < h){ |
| | | h = (h * min) / w; |
| | | w = min; |
| | | } else { |
| | | w = (w * min) / h; |
| | | h = min; |
| | | } |
| | | image resized = resize_image(im, w, h); |
| | | return resized; |
| | | } |
| | | |
| | | image random_crop_image(image im, int low, int high, int size) |
| | | { |
| | | int r = rand_int(low, high); |
| | | image resized = resize_min(im, r); |
| | | int dx = rand_int(0, resized.w - size); |
| | | int dy = rand_int(0, resized.h - size); |
| | | image crop = crop_image(resized, dx, dy, size, size); |
| | | |
| | | /* |
| | | show_image(im, "orig"); |
| | | show_image(crop, "cropped"); |
| | | cvWaitKey(0); |
| | | */ |
| | | |
| | | free_image(resized); |
| | | return crop; |
| | | } |
| | | |
| | | float three_way_max(float a, float b, float c) |
| | | { |
| | | return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ; |
| | |
| | | image exp5 = copy_image(im); |
| | | exposure_image(exp5, .5); |
| | | |
| | | #ifdef GPU |
| | | #ifdef GPU |
| | | image r = resize_image(im, im.w, im.h); |
| | | image black = make_image(im.w*2 + 3, im.h*2 + 3, 9); |
| | | image black2 = make_image(im.w, im.h, 3); |
| | |
| | | cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c); |
| | | show_image_layers(black, "Black"); |
| | | show_image(black2, "Recreate"); |
| | | #endif |
| | | #endif |
| | | |
| | | show_image(im, "Original"); |
| | | show_image(gray, "Gray"); |
| | |
| | | |
| | | if( (src = cvLoadImage(filename, flag)) == 0 ) |
| | | { |
| | | printf("Cannot load image \"%s\"\n", filename); |
| | | exit(0); |
| | | fprintf(stderr, "Cannot load image \"%s\"\n", filename); |
| | | char buff[256]; |
| | | sprintf(buff, "echo %s >> bad.list", filename); |
| | | system(buff); |
| | | return make_image(10,10,3); |
| | | //exit(0); |
| | | } |
| | | image out = ipl_to_image(src); |
| | | cvReleaseImage(&src); |
| | |
| | | #include <math.h> |
| | | #include "box.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/imgproc/imgproc_c.h" |
| | | #endif |
| | | |
| | | typedef struct { |
| | | int h; |
| | | int w; |
| | |
| | | image image_distance(image a, image b); |
| | | void scale_image(image m, float s); |
| | | image crop_image(image im, int dx, int dy, int w, int h); |
| | | image random_crop_image(image im, int low, int high, int size); |
| | | image resize_image(image im, int w, int h); |
| | | image resize_image2(image im, int w, int h); |
| | | image resize_min(image im, int min); |
| | | void translate_image(image m, float s); |
| | | void normalize_image(image p); |
| | | image rotate_image(image m, float rad); |
| | |
| | | |
| | | #ifdef OPENCV |
| | | void save_image_jpg(image p, char *name); |
| | | image get_image_from_stream(CvCapture *cap); |
| | | image ipl_to_image(IplImage* src); |
| | | #endif |
| | | |
| | | void print_image(image m); |
| | |
| | | args.m = N; |
| | | args.labels = labels; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.type = OLD_CLASSIFICATION_DATA; |
| | | |
| | | load_thread = load_data_in_thread(args); |
| | | int epoch = (*net.seen)/N; |
| | |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.type = OLD_CLASSIFICATION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | for(i = 1; i <= splits; ++i){ |
| | |
| | | LOCAL, |
| | | SHORTCUT, |
| | | ACTIVE, |
| | | RNN |
| | | RNN, |
| | | CRNN |
| | | } LAYER_TYPE; |
| | | |
| | | typedef enum{ |
| | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "local_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | |
| | | return "connected"; |
| | | case RNN: |
| | | return "rnn"; |
| | | case CRNN: |
| | | return "crnn"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case AVGPOOL: |
| | |
| | | forward_connected_layer(l, state); |
| | | } else if(l.type == RNN){ |
| | | forward_rnn_layer(l, state); |
| | | } else if(l.type == CRNN){ |
| | | forward_crnn_layer(l, state); |
| | | } else if(l.type == CROP){ |
| | | forward_crop_layer(l, state); |
| | | } else if(l.type == COST){ |
| | |
| | | update_connected_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == RNN){ |
| | | update_rnn_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == CRNN){ |
| | | update_crnn_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == LOCAL){ |
| | | update_local_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | |
| | | int count = 0; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.layers[i].type == COST){ |
| | | sum += net.layers[i].output[0]; |
| | | sum += net.layers[i].cost[0]; |
| | | ++count; |
| | | } |
| | | if(net.layers[i].type == DETECTION){ |
| | |
| | | backward_connected_layer(l, state); |
| | | } else if(l.type == RNN){ |
| | | backward_rnn_layer(l, state); |
| | | } else if(l.type == CRNN){ |
| | | backward_crnn_layer(l, state); |
| | | } else if(l.type == LOCAL){ |
| | | backward_local_layer(l, state); |
| | | } else if(l.type == COST){ |
| | |
| | | |
| | | int inputs; |
| | | int h, w, c; |
| | | int max_crop; |
| | | |
| | | #ifdef GPU |
| | | float **input_gpu; |
| | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | |
| | | forward_connected_layer_gpu(l, state); |
| | | } else if(l.type == RNN){ |
| | | forward_rnn_layer_gpu(l, state); |
| | | } else if(l.type == CRNN){ |
| | | forward_crnn_layer_gpu(l, state); |
| | | } else if(l.type == CROP){ |
| | | forward_crop_layer_gpu(l, state); |
| | | } else if(l.type == COST){ |
| | |
| | | backward_connected_layer_gpu(l, state); |
| | | } else if(l.type == RNN){ |
| | | backward_rnn_layer_gpu(l, state); |
| | | } else if(l.type == CRNN){ |
| | | backward_crnn_layer_gpu(l, state); |
| | | } else if(l.type == COST){ |
| | | backward_cost_layer_gpu(l, state); |
| | | } else if(l.type == ROUTE){ |
| | |
| | | update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == RNN){ |
| | | update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == CRNN){ |
| | | update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == LOCAL){ |
| | | update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | // ./darknet nightmare cfg/extractor.recon.cfg ~/trained/yolo-coco.conv frame6.png -reconstruct -iters 500 -i 3 -lambda .1 -rate .01 -smooth 2 |
| | | |
| | | float abs_mean(float *x, int n) |
| | | { |
| | | int i; |
| | |
| | | |
| | | void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm) |
| | | { |
| | | scale_image(orig, 2); |
| | | translate_image(orig, -1); |
| | | //scale_image(orig, 2); |
| | | //translate_image(orig, -1); |
| | | net->n = max_layer + 1; |
| | | |
| | | int dx = rand()%16 - 8; |
| | |
| | | translate_image(orig, mean); |
| | | */ |
| | | |
| | | translate_image(orig, 1); |
| | | scale_image(orig, .5); |
| | | //translate_image(orig, 1); |
| | | //scale_image(orig, .5); |
| | | //normalize_image(orig); |
| | | |
| | | constrain_image(orig); |
| | |
| | | } |
| | | } |
| | | |
| | | void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size) |
| | | void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters) |
| | | { |
| | | scale_image(recon, 2); |
| | | translate_image(recon, -1); |
| | | int iter = 0; |
| | | for (iter = 0; iter < iters; ++iter) { |
| | | image delta = make_image(recon.w, recon.h, recon.c); |
| | | |
| | | image delta = make_image(recon.w, recon.h, recon.c); |
| | | |
| | | network_state state = {0}; |
| | | network_state state = {0}; |
| | | #ifdef GPU |
| | | state.input = cuda_make_array(recon.data, recon.w*recon.h*recon.c); |
| | | state.delta = cuda_make_array(delta.data, delta.w*delta.h*delta.c); |
| | | state.truth = cuda_make_array(features, get_network_output_size(net)); |
| | | state.input = cuda_make_array(recon.data, recon.w*recon.h*recon.c); |
| | | state.delta = cuda_make_array(delta.data, delta.w*delta.h*delta.c); |
| | | state.truth = cuda_make_array(features, get_network_output_size(net)); |
| | | |
| | | forward_network_gpu(net, state); |
| | | backward_network_gpu(net, state); |
| | | forward_network_gpu(net, state); |
| | | backward_network_gpu(net, state); |
| | | |
| | | cuda_pull_array(state.delta, delta.data, delta.w*delta.h*delta.c); |
| | | cuda_pull_array(state.delta, delta.data, delta.w*delta.h*delta.c); |
| | | |
| | | cuda_free(state.input); |
| | | cuda_free(state.delta); |
| | | cuda_free(state.truth); |
| | | cuda_free(state.input); |
| | | cuda_free(state.delta); |
| | | cuda_free(state.truth); |
| | | #else |
| | | state.input = recon.data; |
| | | state.delta = delta.data; |
| | | state.truth = features; |
| | | state.input = recon.data; |
| | | state.delta = delta.data; |
| | | state.truth = features; |
| | | |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | #endif |
| | | |
| | | axpy_cpu(recon.w*recon.h*recon.c, 1, delta.data, 1, update.data, 1); |
| | | smooth(recon, update, lambda, smooth_size); |
| | | axpy_cpu(recon.w*recon.h*recon.c, 1, delta.data, 1, update.data, 1); |
| | | smooth(recon, update, lambda, smooth_size); |
| | | |
| | | axpy_cpu(recon.w*recon.h*recon.c, rate, update.data, 1, recon.data, 1); |
| | | scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1); |
| | | axpy_cpu(recon.w*recon.h*recon.c, rate, update.data, 1, recon.data, 1); |
| | | scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1); |
| | | |
| | | translate_image(recon, 1); |
| | | scale_image(recon, .5); |
| | | //float mag = mag_array(recon.data, recon.w*recon.h*recon.c); |
| | | //scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1); |
| | | |
| | | float mag = mag_array(recon.data, recon.w*recon.h*recon.c); |
| | | scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1); |
| | | |
| | | constrain_image(recon); |
| | | free_image(delta); |
| | | constrain_image(recon); |
| | | free_image(delta); |
| | | } |
| | | } |
| | | |
| | | |
| | |
| | | im = resized; |
| | | } |
| | | |
| | | float *features; |
| | | float *features = 0; |
| | | image update; |
| | | if (reconstruct){ |
| | | resize_network(&net, im.w, im.h); |
| | |
| | | printf("%d features\n", out_im.w*out_im.h*out_im.c); |
| | | |
| | | |
| | | im = resize_image(im, im.w*2, im.h); |
| | | f_im = resize_image(f_im, f_im.w*2, f_im.h); |
| | | im = resize_image(im, im.w, im.h); |
| | | f_im = resize_image(f_im, f_im.w, f_im.h); |
| | | features = f_im.data; |
| | | |
| | | int i; |
| | | for(i = 0; i < 14*14*512; ++i){ |
| | | features[i] += rand_uniform(-.19, .19); |
| | | } |
| | | |
| | | free_image(im); |
| | | im = make_random_image(im.w, im.h, im.c); |
| | | update = make_image(im.w, im.h, im.c); |
| | | |
| | | } |
| | | |
| | | int e; |
| | |
| | | fprintf(stderr, "%d, ", n); |
| | | fflush(stderr); |
| | | if(reconstruct){ |
| | | reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size); |
| | | reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1); |
| | | //if ((n+1)%30 == 0) rate *= .5; |
| | | show_image(im, "reconstruction"); |
| | | #ifdef OPENCV |
| | | #ifdef OPENCV |
| | | cvWaitKey(10); |
| | | #endif |
| | | #endif |
| | | }else{ |
| | | int layer = max_layer + rand()%range - range/2; |
| | | int octave = rand()%octaves; |
| | |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_rnn(section *s); |
| | | int is_crnn(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_avgpool(section *s); |
| | | int is_dropout(section *s); |
| | |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_crnn(list *options, size_params params) |
| | | { |
| | | int output_filters = option_find_int(options, "output_filters",1); |
| | | int hidden_filters = option_find_int(options, "hidden_filters",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_rnn(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | |
| | | l = parse_deconvolutional(options, params); |
| | | }else if(is_rnn(s)){ |
| | | l = parse_rnn(options, params); |
| | | }else if(is_crnn(s)){ |
| | | l = parse_crnn(options, params); |
| | | }else if(is_connected(s)){ |
| | | l = parse_connected(options, params); |
| | | }else if(is_crop(s)){ |
| | |
| | | return (strcmp(s->type, "[net]")==0 |
| | | || strcmp(s->type, "[network]")==0); |
| | | } |
| | | int is_crnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crnn]")==0); |
| | | } |
| | | int is_rnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[rnn]")==0); |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | |
| | | void save_connected_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | |
| | | for(i = 0; i < net.n && i < cutoff; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | save_convolutional_weights(l, fp); |
| | | } if(l.type == CONNECTED){ |
| | | save_connected_weights(l, fp); |
| | | } if(l.type == RNN){ |
| | | save_connected_weights(*(l.input_layer), fp); |
| | | save_connected_weights(*(l.self_layer), fp); |
| | | save_connected_weights(*(l.output_layer), fp); |
| | | } if(l.type == CRNN){ |
| | | save_convolutional_weights(*(l.input_layer), fp); |
| | | save_convolutional_weights(*(l.self_layer), fp); |
| | | save_convolutional_weights(*(l.output_layer), fp); |
| | | } if(l.type == LOCAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | load_convolutional_weights(l, fp); |
| | | } |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | |
| | | if(l.type == CONNECTED){ |
| | | load_connected_weights(l, fp, transpose); |
| | | } |
| | | if(l.type == CRNN){ |
| | | load_convolutional_weights(*(l.input_layer), fp); |
| | | load_convolutional_weights(*(l.self_layer), fp); |
| | | load_convolutional_weights(*(l.output_layer), fp); |
| | | } |
| | | if(l.type == RNN){ |
| | | load_connected_weights(*(l.input_layer), fp, transpose); |
| | | load_connected_weights(*(l.self_layer), fp, transpose); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int batch = net.batch; |
| | | int steps = net.time_steps; |
| | | //*net.seen = 0; |
| | | int i = (*net.seen)/net.batch; |
| | | |
| | | clock_t time; |
| | |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | void increment_layer(layer *l, int steps) |
| | | static void increment_layer(layer *l, int steps) |
| | | { |
| | | int num = l->outputs*l->batch*steps; |
| | | l->output += num; |
| New file |
| | |
| | | #include "network.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "blas.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | |
| | | void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters); |
| | | |
| | | |
| | | typedef struct { |
| | | float *x; |
| | | float *y; |
| | | } float_pair; |
| | | |
| | | float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps) |
| | | { |
| | | int b; |
| | | assert(net.batch == steps + 1); |
| | | image out_im = get_network_image(net); |
| | | int output_size = out_im.w*out_im.h*out_im.c; |
| | | printf("%d %d %d\n", out_im.w, out_im.h, out_im.c); |
| | | float *feats = calloc(net.batch*batch*output_size, sizeof(float)); |
| | | for(b = 0; b < batch; ++b){ |
| | | int input_size = net.w*net.h*net.c; |
| | | float *input = calloc(input_size*net.batch, sizeof(float)); |
| | | char *filename = files[rand()%n]; |
| | | CvCapture *cap = cvCaptureFromFile(filename); |
| | | int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT); |
| | | int index = rand() % (frames - steps - 2); |
| | | if (frames < (steps + 4)){ |
| | | --b; |
| | | free(input); |
| | | continue; |
| | | } |
| | | |
| | | printf("frames: %d, index: %d\n", frames, index); |
| | | cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.batch; ++i){ |
| | | IplImage* src = cvQueryFrame(cap); |
| | | image im = ipl_to_image(src); |
| | | rgbgr_image(im); |
| | | image re = resize_image(im, net.w, net.h); |
| | | //show_image(re, "loaded"); |
| | | //cvWaitKey(10); |
| | | memcpy(input + i*input_size, re.data, input_size*sizeof(float)); |
| | | free_image(im); |
| | | free_image(re); |
| | | } |
| | | float *output = network_predict(net, input); |
| | | |
| | | free(input); |
| | | |
| | | for(i = 0; i < net.batch; ++i){ |
| | | memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float)); |
| | | } |
| | | |
| | | cvReleaseCapture(&cap); |
| | | } |
| | | |
| | | //printf("%d %d %d\n", out_im.w, out_im.h, out_im.c); |
| | | float_pair p = {0}; |
| | | p.x = feats; |
| | | p.y = feats + output_size*batch; //+ out_im.w*out_im.h*out_im.c; |
| | | |
| | | return p; |
| | | } |
| | | |
| | | |
| | | void train_vid_rnn(char *cfgfile, char *weightfile) |
| | | { |
| | | char *train_videos = "data/vid/train.txt"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | |
| | | list *plist = get_paths(train_videos); |
| | | int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | clock_t time; |
| | | int steps = net.time_steps; |
| | | int batch = net.batch / net.time_steps; |
| | | |
| | | network extractor = parse_network_cfg("cfg/extractor.cfg"); |
| | | load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv"); |
| | | |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps); |
| | | |
| | | float loss = train_network_datum(net, p.x, p.y) / (net.batch); |
| | | |
| | | |
| | | free(p.x); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | |
| | | image save_reconstruction(network net, image *init, float *feat, char *name, int i) |
| | | { |
| | | image recon; |
| | | if (init) { |
| | | recon = copy_image(*init); |
| | | } else { |
| | | recon = make_random_image(net.w, net.h, 3); |
| | | } |
| | | |
| | | image update = make_image(net.w, net.h, 3); |
| | | reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50); |
| | | char buff[256]; |
| | | sprintf(buff, "%s%d", name, i); |
| | | save_image(recon, buff); |
| | | free_image(update); |
| | | return recon; |
| | | } |
| | | |
| | | void generate_vid_rnn(char *cfgfile, char *weightfile) |
| | | { |
| | | network extractor = parse_network_cfg("cfg/extractor.recon.cfg"); |
| | | load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv"); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&extractor, 1); |
| | | set_batch_network(&net, 1); |
| | | |
| | | int i; |
| | | CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4"); |
| | | float *feat; |
| | | float *next; |
| | | image last; |
| | | for(i = 0; i < 25; ++i){ |
| | | image im = get_image_from_stream(cap); |
| | | image re = resize_image(im, extractor.w, extractor.h); |
| | | feat = network_predict(extractor, re.data); |
| | | if(i > 0){ |
| | | printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512)); |
| | | printf("%f %f\n", mean_array(next, 14*14*512), variance_array(next, 14*14*512)); |
| | | printf("%f\n", mse_array(feat, 14*14*512)); |
| | | axpy_cpu(14*14*512, -1, feat, 1, next, 1); |
| | | printf("%f\n", mse_array(next, 14*14*512)); |
| | | } |
| | | next = network_predict(net, feat); |
| | | |
| | | free_image(im); |
| | | |
| | | free_image(save_reconstruction(extractor, 0, feat, "feat", i)); |
| | | free_image(save_reconstruction(extractor, 0, next, "next", i)); |
| | | if (i==24) last = copy_image(re); |
| | | free_image(re); |
| | | } |
| | | for(i = 0; i < 30; ++i){ |
| | | next = network_predict(net, next); |
| | | image new = save_reconstruction(extractor, &last, next, "new", i); |
| | | free_image(last); |
| | | last = new; |
| | | } |
| | | } |
| | | |
| | | void run_vid_rnn(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | //char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "train")) train_vid_rnn(cfg, weights); |
| | | else if(0==strcmp(argv[2], "generate")) generate_vid_rnn(cfg, weights); |
| | | } |
| | | #else |
| | | void run_vid_rnn(int argc, char **argv){} |
| | | #endif |
| | | |
| New file |
| | |
| | | #include "network.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | void train_tag(char *cfgfile, char *weightfile) |
| | | { |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | list *plist = get_paths("/home/pjreddie/tag/train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | int N = plist->size; |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.min = net.w; |
| | | args.max = net.max_crop; |
| | | args.size = net.w; |
| | | |
| | | args.paths = paths; |
| | | args.classes = net.outputs; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.d = &buffer; |
| | | args.type = TAG_DATA; |
| | | |
| | | fprintf(stderr, "%d classes\n", net.outputs); |
| | | |
| | | load_thread = load_data_in_thread(args); |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | |
| | | load_thread = load_data_in_thread(args); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | free_data(train); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | free_network(net); |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | } |
| | | |
| | | void test_tag(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char **names = get_labels("data/tags.txt"); |
| | | clock_t time; |
| | | int indexes[10]; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | }else{ |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, net.w, net.h); |
| | | //resize_network(&net, im.w, im.h); |
| | | printf("%d %d\n", im.w, im.h); |
| | | |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | for(i = 0; i < 10; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
| | | } |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | |
| | | void run_tag(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_tag(cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename); |
| | | } |
| | | |
| | |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | #include <math.h> |
| | | #include <assert.h> |
| | | #include <unistd.h> |
| | | #include <float.h> |
| | | #include <limits.h> |
| | |
| | | char *find_replace(char *str, char *orig, char *rep) |
| | | { |
| | | static char buffer[4096]; |
| | | static char buffer2[4096]; |
| | | static char buffer3[4096]; |
| | | char *p; |
| | | |
| | | if(!(p = strstr(str, orig))) // Is 'orig' even in 'str'? |
| | | return str; |
| | | |
| | | strncpy(buffer, str, p-str); // Copy characters from 'str' start to 'orig' st$ |
| | | buffer[p-str] = '\0'; |
| | | strncpy(buffer2, str, p-str); // Copy characters from 'str' start to 'orig' st$ |
| | | buffer2[p-str] = '\0'; |
| | | |
| | | sprintf(buffer+(p-str), "%s%s", rep, p+strlen(orig)); |
| | | sprintf(buffer3, "%s%s%s", buffer2, rep, p+strlen(orig)); |
| | | sprintf(buffer, "%s", buffer3); |
| | | |
| | | return buffer; |
| | | } |
| | |
| | | void error(const char *s) |
| | | { |
| | | perror(s); |
| | | exit(0); |
| | | assert(0); |
| | | exit(-1); |
| | | } |
| | | |
| | | void malloc_error() |
| | |
| | | return max_i; |
| | | } |
| | | |
| | | int rand_int(int min, int max) |
| | | { |
| | | int r = (rand()%(max - min + 1)) + min; |
| | | return r; |
| | | } |
| | | |
| | | // From http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform |
| | | #define TWO_PI 6.2831853071795864769252866 |
| | | float rand_normal() |
| | |
| | | float mse_array(float *a, int n); |
| | | float rand_normal(); |
| | | float rand_uniform(float min, float max); |
| | | int rand_int(int min, int max); |
| | | float sum_array(float *a, int n); |
| | | float mean_array(float *a, int n); |
| | | void mean_arrays(float **a, int n, int els, float *avg); |