2 files modified
1 files added
1 files renamed
| | |
| | | classes=20 |
| | | coords=4 |
| | | rescore=1 |
| | | joint=1 |
| | | objectness = 0 |
| | | background=0 |
| | | joint=0 |
| | | objectness=1 |
| | | |
| New file |
| | |
| | | import xml.etree.ElementTree as ET |
| | | import pickle |
| | | import os |
| | | from os import listdir, getcwd |
| | | from os.path import join |
| | | |
| | | sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')] |
| | | |
| | | classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] |
| | | |
| | | |
| | | def convert(size, box): |
| | | dw = 1./size[0] |
| | | dh = 1./size[1] |
| | | x = (box[0] + box[1])/2.0 |
| | | y = (box[2] + box[3])/2.0 |
| | | w = box[1] - box[0] |
| | | h = box[3] - box[2] |
| | | x = x*dw |
| | | w = w*dw |
| | | y = y*dh |
| | | h = h*dh |
| | | return (x,y,w,h) |
| | | |
| | | def convert_annotation(year, image_id): |
| | | in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id)) |
| | | out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w') |
| | | tree=ET.parse(in_file) |
| | | root = tree.getroot() |
| | | size = root.find('size') |
| | | w = int(size.find('width').text) |
| | | h = int(size.find('height').text) |
| | | |
| | | for obj in root.iter('object'): |
| | | difficult = obj.find('difficult').text |
| | | cls = obj.find('name').text |
| | | if cls not in classes or int(difficult) == 1: |
| | | continue |
| | | cls_id = classes.index(cls) |
| | | xmlbox = obj.find('bndbox') |
| | | b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) |
| | | bb = convert((w,h), b) |
| | | out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') |
| | | |
| | | wd = getcwd() |
| | | |
| | | for year, image_set in sets: |
| | | if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)): |
| | | os.makedirs('VOCdevkit/VOC%s/labels/'%(year)) |
| | | image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split() |
| | | list_file = open('%s_%s.txt'%(year, image_set), 'w') |
| | | for image_id in image_ids: |
| | | list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id)) |
| | | convert_annotation(year, image_id) |
| | | list_file.close() |
| | | |
| | |
| | | |
| | | void train_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | char **paths; |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt"); |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | |
| | | paths = (char **)list_to_array(plist); |
| | |
| | | fprintf(stderr, "Starting second stage...\n"); |
| | | net.learning_rate *= 10; |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base); |
| | | sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | net.learning_rate *= .1; |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base); |
| | | sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | return; |
| | | } |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base); |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |