Cleaning & commenting #3 - refactoring constants to Config class
7 files modified
2 files added
3 files deleted
| New file |
| | |
| | | import os |
| | | |
| | | |
| | | class Config: |
| | | # List of all black-bordered cards printed from 8th edition and onwards (8ed and 9ed are white-bordered) |
| | | # Core & expansion sets with 2003 frame |
| | | set_2003_list = ['mrd', 'dst', '5dn', 'chk', 'bok', 'sok', 'rav', 'gpt', 'dis', 'csp', 'tsp', 'plc', 'fut', '10e', |
| | | 'lrw', 'mor', 'shm', 'eve', 'ala', 'con', 'arb', 'm10', 'zen', 'wwk', 'roe', 'm11', 'som', 'mbs', |
| | | 'nph', 'm12', 'isd', 'dka', 'avr', 'm13', 'rtr', 'gtc', 'dgm', 'm14', 'ths', 'bng', 'jou'] |
| | | # Core & expansion sets with 2015 frame |
| | | set_2015_list = ['m15', 'ktk', 'frf', 'dtk', 'bfz', 'ogw', 'soi', 'emn', 'kld', 'aer', 'akh', 'hou', 'xln', 'rix', |
| | | 'dom'] |
| | | # Box sets |
| | | set_box_list = ['evg', 'drb', 'dd2', 'ddc', 'td0', 'v09', 'ddd', 'h09', 'dde', 'dpa', 'v10', 'ddf', 'td0', 'pd2', |
| | | 'ddg', |
| | | 'cmd', 'v11', 'ddh', 'pd3', 'ddi', 'v12', 'ddj', 'cm1', 'td2', 'ddk', 'v13', 'ddl', 'c13', 'ddm', |
| | | 'md1', |
| | | 'v14', 'ddn', 'c14', 'ddo', 'v15', 'ddp', 'c15', 'ddq', 'v16', 'ddr', 'c16', 'pca', 'dds', 'cma', |
| | | 'c17', |
| | | 'ddt', 'v17', 'ddu', 'cm2', 'ss1', 'gs1', 'c18'] |
| | | # Supplemental sets |
| | | set_sup_list = ['hop', 'arc', 'pc2', 'cns', 'cn2', 'e01', 'e02', 'bbd'] |
| | | all_set_list = set_2003_list #+ set_2015_list + set_box_list + set_sup_list |
| | | |
| | | card_mask_path = os.path.abspath('data/mask.png') |
| | | data_dir = os.path.abspath('/media/win10/data') |
| | | darknet_dir = os.path.abspath('.') |
| | |
| | | from urllib import request, error |
| | | import ast |
| | | import json |
| | | import os |
| | | import pandas as pd |
| | | import re |
| | | import os |
| | | import transform_data |
| | | from urllib import request, error |
| | | |
| | | from config import Config |
| | | |
| | | """ |
| | | Note: All codes in this file realies on Scryfall API to aggregate card database and their images. |
| | | Scryfall API doc is available at: https://scryfall.com/docs/api |
| | | """ |
| | | |
| | | # List of all black-bordered cards printed from 8th edition and onwards (8ed and 9ed are white-bordered) |
| | | # Core & expansion sets with 2003 frame |
| | | set_2003_list = ['mrd', 'dst', '5dn', 'chk', 'bok', 'sok', 'rav', 'gpt', 'dis', 'csp', 'tsp', 'plc', 'fut', '10e', |
| | | 'lrw', 'mor', 'shm', 'eve', 'ala', 'con', 'arb', 'm10', 'zen', 'wwk', 'roe', 'm11', 'som', 'mbs', |
| | | 'nph', 'm12', 'isd', 'dka', 'avr', 'm13', 'rtr', 'gtc', 'dgm', 'm14', 'ths', 'bng', 'jou'] |
| | | # Core & expansion sets with 2015 frame |
| | | set_2015_list = ['m15', 'ktk', 'frf', 'dtk', 'bfz', 'ogw', 'soi', 'emn', 'kld', 'aer', 'akh', 'hou', 'xln', 'rix', 'dom'] |
| | | |
| | | # Box sets |
| | | set_box_list = ['evg', 'drb', 'dd2', 'ddc', 'td0', 'v09', 'ddd', 'h09', 'dde', 'dpa', 'v10', 'ddf', 'td0', 'pd2', 'ddg', |
| | | 'cmd', 'v11', 'ddh', 'pd3', 'ddi', 'v12', 'ddj', 'cm1', 'td2', 'ddk', 'v13', 'ddl', 'c13', 'ddm', 'md1', |
| | | 'v14', 'ddn', 'c14', 'ddo', 'v15', 'ddp', 'c15', 'ddq', 'v16', 'ddr', 'c16', 'pca', 'dds', 'cma', 'c17', |
| | | 'ddt', 'v17', 'ddu', 'cm2', 'ss1', 'gs1', 'c18'] |
| | | |
| | | # Supplemental sets |
| | | set_sup_list = ['hop', 'arc', 'pc2', 'cns', 'cn2', 'e01', 'e02', 'bbd'] |
| | | |
| | | all_set_list = set_2003_list |
| | | |
| | | |
| | | def fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+format:modern+lang:en+frame:2003', |
| | | csv_name=None): |
| | |
| | | :return: |
| | | """ |
| | | if out_dir is None: |
| | | out_dir = '%s/card_img/%s/%s' % (transform_data.data_dir, size, row['set']) |
| | | out_dir = '%s/card_img/%s/%s' % (Config.data_dir, size, row['set']) |
| | | if not os.path.exists(out_dir): |
| | | os.makedirs(out_dir) |
| | | |
| | |
| | | |
| | | def main(): |
| | | # Query card data by each set, then merge them together |
| | | for set_name in all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) |
| | | for set_name in Config.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name) |
| | | print(csv_name) |
| | | if not os.path.isfile(csv_name): |
| | | df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=set:%s+lang:en' % set_name, |
| | |
| | | else: |
| | | df = load_all_cards_text(csv_name) |
| | | df.sort_values('collector_number') |
| | | fetch_all_cards_image(df, out_dir='%s/card_img/png/%s' % (transform_data.data_dir, set_name)) |
| | | fetch_all_cards_image(df, out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name)) |
| | | |
| | | #df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+lang:en+frame:2003', |
| | | # csv_name='data/csv/all.csv') |
| | | # csv_name='%s/csv/all.csv' % Config.data_dir) |
| | | return |
| | | |
| | | |
| | |
| | | from glob import glob |
| | | import matplotlib.pyplot as plt |
| | | import matplotlib.image as mpimage |
| | | import pickle |
| | | import math |
| | | import random |
| | | import os |
| | | import cv2 |
| | | import fetch_data |
| | | from glob import glob |
| | | import math |
| | | import matplotlib.pyplot as plt |
| | | import matplotlib.image as mpimage |
| | | import numpy as np |
| | | import os |
| | | import pandas as pd |
| | | import pickle |
| | | import random |
| | | import transform_data |
| | | |
| | | from config import Config |
| | | |
| | | |
| | | class Backgrounds: |
| | | """ |
| | |
| | | #bg.get_random(display=True) |
| | | |
| | | card_pool = pd.DataFrame() |
| | | for set_name in fetch_data.all_set_list: |
| | | df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name) |
| | | for set_name in Config.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name)) |
| | | #for _ in range(3): |
| | | # card_info = df.iloc[random.randint(0, df.shape[0] - 1)] |
| | | # # Currently ignoring planeswalker cards due to their different card layout |
| | |
| | | ''' |
| | | |
| | | for _, card_info in card_pool.iterrows(): |
| | | img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | print(img_name) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | |
| | | from PIL import Image |
| | | import time |
| | | |
| | | from config import Config |
| | | import fetch_data |
| | | import transform_data |
| | | |
| | | |
| | | """ |
| | |
| | | for card_name in card_names: |
| | | # Fetch the image - name can be found based on the card's information |
| | | card_info['name'] = card_name |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | card_img = cv2.imread(img_name) |
| | |
| | | # If the image doesn't exist, download it from the URL |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, |
| | | out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set'])) |
| | | out_dir='%s/card_img/png/%s' % (Config.data_dir, card_info['set'])) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | |
| | | # Find the contour |
| | | _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
| | | if len(cnts) == 0: |
| | | print('no contours') |
| | | #print('no contours') |
| | | return [] |
| | | |
| | | # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child |
| | |
| | | card_set = key[key.find('(') + 1:key.find(')')] |
| | | confidence = sum(val) / f_len |
| | | card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0] |
| | | img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'], |
| | | img_name = '%s/card_img/tiny/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | # If the card image is not found, just leave it blank |
| | |
| | | else: |
| | | # Merge database for all cards, then calculate pHash values of each, store them |
| | | df_list = [] |
| | | for set_name in fetch_data.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name) |
| | | for set_name in Config.all_set_list: |
| | | csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name) |
| | | df = fetch_data.load_all_cards_text(csv_name) |
| | | df_list.append(df) |
| | | card_pool = pd.concat(df_list, sort=True) |
| | |
| | | from transform_data import data_dir |
| | | from glob import glob |
| | | import cv2 |
| | | from glob import glob |
| | | import os |
| | | |
| | | from config import Config |
| | | |
| | | card_size = (63, 88) |
| | | |
| | | for subdir in glob(data_dir + "/card_img/png/*"): |
| | | for subdir in glob(Config.data_dir + "/card_img/png/*"): |
| | | split = subdir.split('/') |
| | | split[-2] = 'tiny' |
| | | dir_out = '/'.join(split) |
| | |
| | | import os |
| | | from glob import glob |
| | | import os |
| | | import random |
| | | import transform_data |
| | | |
| | | from config import Config |
| | | |
| | | |
| | | def main(): |
| | | random.seed() |
| | | data_list = [] |
| | | for subdir in glob('%s/train/*_update' % transform_data.data_dir): |
| | | for subdir in glob('%s/train/*_update' % Config.data_dir): |
| | | for data in glob(subdir + "/*.jpg"): |
| | | data_list.append(os.path.abspath(data)) |
| | | random.shuffle(data_list) |
| | |
| | | test_ratio = 0.1 |
| | | test_list = data_list[:int(test_ratio * len(data_list))] |
| | | train_list = data_list[int(test_ratio * len(data_list)):] |
| | | with open('%s/train.txt' % transform_data.darknet_dir, 'w') as train_txt: |
| | | with open('%s/train.txt' % Config.darknet_dir, 'w') as train_txt: |
| | | for data in train_list: |
| | | train_txt.write(data + '\n') |
| | | with open('%s/test.txt' % transform_data.darknet_dir, 'w') as test_txt: |
| | | with open('%s/test.txt' % Config.darknet_dir, 'w') as test_txt: |
| | | for data in test_list: |
| | | test_txt.write(data + '\n') |
| | | return |
| | |
| | | import os |
| | | import random |
| | | import math |
| | | import cv2 |
| | | import numpy as np |
| | | import imutils |
| | | import pandas as pd |
| | | import fetch_data |
| | | import generate_data |
| | | from shapely import geometry |
| | | import imgaug as ia |
| | | from imgaug import augmenters as iaa |
| | | from imgaug import parameters as iap |
| | | import imutils |
| | | import math |
| | | import numpy as np |
| | | import os |
| | | import pandas as pd |
| | | import random |
| | | from shapely import geometry |
| | | |
| | | card_mask = cv2.imread('data/mask.png') |
| | | data_dir = os.path.abspath('/media/win10/data') |
| | | darknet_dir = os.path.abspath('.') |
| | | import fetch_data |
| | | import generate_data |
| | | from config import Config |
| | | |
| | | |
| | | def key_pts_to_yolo(key_pts, w_img, h_img): |
| | |
| | | """ |
| | | self.check_visibility(visibility=visibility) |
| | | img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8) |
| | | card_mask = cv2.imread(Config.card_mask_path) |
| | | |
| | | for card in self.cards: |
| | | card_x = int(card.x + 0.5) |
| | |
| | | random.seed() |
| | | ia.seed(random.randrange(10000)) |
| | | |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False) |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % Config.data_dir, dump_it=False) |
| | | background = generate_data.Backgrounds(images=bg_images) |
| | | |
| | | card_pool = pd.DataFrame() |
| | | for set_name in fetch_data.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name)) |
| | | for set_name in Config.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name)) |
| | | card_pool = card_pool.append(df) |
| | | class_ids = {} |
| | | with open('%s/obj.names' % data_dir) as names_file: |
| | | with open('%s/obj.names' % Config.data_dir) as names_file: |
| | | class_name_list = names_file.read().splitlines() |
| | | for i in range(len(class_name_list)): |
| | | class_ids[class_name_list[i]] = i |
| | |
| | | |
| | | # Use 2 to 5 cards per generator |
| | | for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows(): |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'], |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | out_name += '%s%s_' % (card_info['set'], card_info['collector_number']) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set'])) |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (Config.data_dir, |
| | | card_info['set'])) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | |
| | | if i % 3 == 0: |
| | | generator.generate_non_obstructive() |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | elif i % 3 == 1: |
| | | generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | else: |
| | | generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | |
| | | #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | #generator.render(display=True, aug=seq, debug=True) |