Added compute_mAP.cmd for calculation mAP for Pascal VOC 2007 dataset.
Added reval_voc_py3.py and voc_eval_py3.py for Python3.
| New file |
| | |
| | | rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install numpy |
| | | rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install cPickle |
| | | rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install _pickle |
| | | |
| | | |
| | | rem darknet.exe detector valid data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights |
| | | |
| | | darknet.exe detector valid data/voc.data yolo-voc.cfg yolo-voc.weights |
| | | |
| | | |
| | | reval_voc_py3.py --year 2007 --classes data\voc.names --image_set test --voc_dir E:\VOC2007_2012\VOCtrainval_11-May-2012\VOCdevkit results |
| | | |
| | | |
| | | |
| | | |
| | | pause |
| New file |
| | |
| | | #!/usr/bin/env python |
| | | |
| | | # Adapt from -> |
| | | # -------------------------------------------------------- |
| | | # Fast R-CNN |
| | | # Copyright (c) 2015 Microsoft |
| | | # Licensed under The MIT License [see LICENSE for details] |
| | | # Written by Ross Girshick |
| | | # -------------------------------------------------------- |
| | | # <- Written by Yaping Sun |
| | | |
| | | """Reval = re-eval. Re-evaluate saved detections.""" |
| | | |
| | | import os, sys, argparse |
| | | import numpy as np |
| | | import _pickle as cPickle |
| | | #import cPickle |
| | | |
| | | from voc_eval_py3 import voc_eval |
| | | |
| | | def parse_args(): |
| | | """ |
| | | Parse input arguments |
| | | """ |
| | | parser = argparse.ArgumentParser(description='Re-evaluate results') |
| | | parser.add_argument('output_dir', nargs=1, help='results directory', |
| | | type=str) |
| | | parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) |
| | | parser.add_argument('--year', dest='year', default='2017', type=str) |
| | | parser.add_argument('--image_set', dest='image_set', default='test', type=str) |
| | | |
| | | parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) |
| | | |
| | | if len(sys.argv) == 1: |
| | | parser.print_help() |
| | | sys.exit(1) |
| | | |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | | def get_voc_results_file_template(image_set, out_dir = 'results'): |
| | | filename = 'comp4_det_' + image_set + '_{:s}.txt' |
| | | path = os.path.join(out_dir, filename) |
| | | return path |
| | | |
| | | def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): |
| | | annopath = os.path.join( |
| | | devkit_path, |
| | | 'VOC' + year, |
| | | 'Annotations', |
| | | '{}.xml') |
| | | imagesetfile = os.path.join( |
| | | devkit_path, |
| | | 'VOC' + year, |
| | | 'ImageSets', |
| | | 'Main', |
| | | image_set + '.txt') |
| | | cachedir = os.path.join(devkit_path, 'annotations_cache') |
| | | aps = [] |
| | | # The PASCAL VOC metric changed in 2010 |
| | | use_07_metric = True if int(year) < 2010 else False |
| | | print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) |
| | | print('devkit_path=',devkit_path,', year = ',year) |
| | | |
| | | if not os.path.isdir(output_dir): |
| | | os.mkdir(output_dir) |
| | | for i, cls in enumerate(classes): |
| | | if cls == '__background__': |
| | | continue |
| | | filename = get_voc_results_file_template(image_set).format(cls) |
| | | rec, prec, ap = voc_eval( |
| | | filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, |
| | | use_07_metric=use_07_metric) |
| | | aps += [ap] |
| | | print('AP for {} = {:.4f}'.format(cls, ap)) |
| | | with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: |
| | | cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) |
| | | print('Mean AP = {:.4f}'.format(np.mean(aps))) |
| | | print('~~~~~~~~') |
| | | print('Results:') |
| | | for ap in aps: |
| | | print('{:.3f}'.format(ap)) |
| | | print('{:.3f}'.format(np.mean(aps))) |
| | | print('~~~~~~~~') |
| | | print('') |
| | | print('--------------------------------------------------------------') |
| | | print('Results computed with the **unofficial** Python eval code.') |
| | | print('Results should be very close to the official MATLAB eval code.') |
| | | print('-- Thanks, The Management') |
| | | print('--------------------------------------------------------------') |
| | | |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | output_dir = os.path.abspath(args.output_dir[0]) |
| | | with open(args.class_file, 'r') as f: |
| | | lines = f.readlines() |
| | | |
| | | classes = [t.strip('\n') for t in lines] |
| | | |
| | | print('Evaluating detections') |
| | | do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) |
| New file |
| | |
| | | # -------------------------------------------------------- |
| | | # Fast/er R-CNN |
| | | # Licensed under The MIT License [see LICENSE for details] |
| | | # Written by Bharath Hariharan |
| | | # -------------------------------------------------------- |
| | | |
| | | import xml.etree.ElementTree as ET |
| | | import os |
| | | #import cPickle |
| | | import _pickle as cPickle |
| | | import numpy as np |
| | | |
| | | def parse_rec(filename): |
| | | """ Parse a PASCAL VOC xml file """ |
| | | tree = ET.parse(filename) |
| | | objects = [] |
| | | for obj in tree.findall('object'): |
| | | obj_struct = {} |
| | | obj_struct['name'] = obj.find('name').text |
| | | #obj_struct['pose'] = obj.find('pose').text |
| | | #obj_struct['truncated'] = int(obj.find('truncated').text) |
| | | obj_struct['difficult'] = int(obj.find('difficult').text) |
| | | bbox = obj.find('bndbox') |
| | | obj_struct['bbox'] = [int(bbox.find('xmin').text), |
| | | int(bbox.find('ymin').text), |
| | | int(bbox.find('xmax').text), |
| | | int(bbox.find('ymax').text)] |
| | | objects.append(obj_struct) |
| | | |
| | | return objects |
| | | |
| | | def voc_ap(rec, prec, use_07_metric=False): |
| | | """ ap = voc_ap(rec, prec, [use_07_metric]) |
| | | Compute VOC AP given precision and recall. |
| | | If use_07_metric is true, uses the |
| | | VOC 07 11 point method (default:False). |
| | | """ |
| | | if use_07_metric: |
| | | # 11 point metric |
| | | ap = 0. |
| | | for t in np.arange(0., 1.1, 0.1): |
| | | if np.sum(rec >= t) == 0: |
| | | p = 0 |
| | | else: |
| | | p = np.max(prec[rec >= t]) |
| | | ap = ap + p / 11. |
| | | else: |
| | | # correct AP calculation |
| | | # first append sentinel values at the end |
| | | mrec = np.concatenate(([0.], rec, [1.])) |
| | | mpre = np.concatenate(([0.], prec, [0.])) |
| | | |
| | | # compute the precision envelope |
| | | for i in range(mpre.size - 1, 0, -1): |
| | | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
| | | |
| | | # to calculate area under PR curve, look for points |
| | | # where X axis (recall) changes value |
| | | i = np.where(mrec[1:] != mrec[:-1])[0] |
| | | |
| | | # and sum (\Delta recall) * prec |
| | | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
| | | return ap |
| | | |
| | | def voc_eval(detpath, |
| | | annopath, |
| | | imagesetfile, |
| | | classname, |
| | | cachedir, |
| | | ovthresh=0.5, |
| | | use_07_metric=False): |
| | | """rec, prec, ap = voc_eval(detpath, |
| | | annopath, |
| | | imagesetfile, |
| | | classname, |
| | | [ovthresh], |
| | | [use_07_metric]) |
| | | |
| | | Top level function that does the PASCAL VOC evaluation. |
| | | |
| | | detpath: Path to detections |
| | | detpath.format(classname) should produce the detection results file. |
| | | annopath: Path to annotations |
| | | annopath.format(imagename) should be the xml annotations file. |
| | | imagesetfile: Text file containing the list of images, one image per line. |
| | | classname: Category name (duh) |
| | | cachedir: Directory for caching the annotations |
| | | [ovthresh]: Overlap threshold (default = 0.5) |
| | | [use_07_metric]: Whether to use VOC07's 11 point AP computation |
| | | (default False) |
| | | """ |
| | | # assumes detections are in detpath.format(classname) |
| | | # assumes annotations are in annopath.format(imagename) |
| | | # assumes imagesetfile is a text file with each line an image name |
| | | # cachedir caches the annotations in a pickle file |
| | | |
| | | # first load gt |
| | | if not os.path.isdir(cachedir): |
| | | os.mkdir(cachedir) |
| | | cachefile = os.path.join(cachedir, 'annots.pkl') |
| | | # read list of images |
| | | with open(imagesetfile, 'r') as f: |
| | | lines = f.readlines() |
| | | imagenames = [x.strip() for x in lines] |
| | | |
| | | if not os.path.isfile(cachefile): |
| | | # load annots |
| | | recs = {} |
| | | for i, imagename in enumerate(imagenames): |
| | | recs[imagename] = parse_rec(annopath.format(imagename)) |
| | | #if i % 100 == 0: |
| | | #print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames)) |
| | | # save |
| | | #print('Saving cached annotations to {:s}').format(cachefile) |
| | | with open(cachefile, 'wb') as f: |
| | | cPickle.dump(recs, f) |
| | | else: |
| | | # load |
| | | print('!!! cachefile = ',cachefile) |
| | | with open(cachefile, 'rb') as f: |
| | | recs = cPickle.load(f) |
| | | |
| | | # extract gt objects for this class |
| | | class_recs = {} |
| | | npos = 0 |
| | | for imagename in imagenames: |
| | | R = [obj for obj in recs[imagename] if obj['name'] == classname] |
| | | bbox = np.array([x['bbox'] for x in R]) |
| | | difficult = np.array([x['difficult'] for x in R]).astype(np.bool) |
| | | det = [False] * len(R) |
| | | npos = npos + sum(~difficult) |
| | | class_recs[imagename] = {'bbox': bbox, |
| | | 'difficult': difficult, |
| | | 'det': det} |
| | | |
| | | # read dets |
| | | detfile = detpath.format(classname) |
| | | with open(detfile, 'r') as f: |
| | | lines = f.readlines() |
| | | |
| | | splitlines = [x.strip().split(' ') for x in lines] |
| | | image_ids = [x[0] for x in splitlines] |
| | | confidence = np.array([float(x[1]) for x in splitlines]) |
| | | BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) |
| | | |
| | | # sort by confidence |
| | | sorted_ind = np.argsort(-confidence) |
| | | sorted_scores = np.sort(-confidence) |
| | | BB = BB[sorted_ind, :] |
| | | image_ids = [image_ids[x] for x in sorted_ind] |
| | | |
| | | # go down dets and mark TPs and FPs |
| | | nd = len(image_ids) |
| | | tp = np.zeros(nd) |
| | | fp = np.zeros(nd) |
| | | for d in range(nd): |
| | | R = class_recs[image_ids[d]] |
| | | bb = BB[d, :].astype(float) |
| | | ovmax = -np.inf |
| | | BBGT = R['bbox'].astype(float) |
| | | |
| | | if BBGT.size > 0: |
| | | # compute overlaps |
| | | # intersection |
| | | ixmin = np.maximum(BBGT[:, 0], bb[0]) |
| | | iymin = np.maximum(BBGT[:, 1], bb[1]) |
| | | ixmax = np.minimum(BBGT[:, 2], bb[2]) |
| | | iymax = np.minimum(BBGT[:, 3], bb[3]) |
| | | iw = np.maximum(ixmax - ixmin + 1., 0.) |
| | | ih = np.maximum(iymax - iymin + 1., 0.) |
| | | inters = iw * ih |
| | | |
| | | # union |
| | | uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + |
| | | (BBGT[:, 2] - BBGT[:, 0] + 1.) * |
| | | (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) |
| | | |
| | | overlaps = inters / uni |
| | | ovmax = np.max(overlaps) |
| | | jmax = np.argmax(overlaps) |
| | | |
| | | if ovmax > ovthresh: |
| | | if not R['difficult'][jmax]: |
| | | if not R['det'][jmax]: |
| | | tp[d] = 1. |
| | | R['det'][jmax] = 1 |
| | | else: |
| | | fp[d] = 1. |
| | | else: |
| | | fp[d] = 1. |
| | | |
| | | # compute precision recall |
| | | fp = np.cumsum(fp) |
| | | tp = np.cumsum(tp) |
| | | rec = tp / float(npos) |
| | | # avoid divide by zero in case the first detection matches a difficult |
| | | # ground truth |
| | | prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
| | | ap = voc_ap(rec, prec, use_07_metric) |
| | | |
| | | return rec, prec, ap |
| New file |
| | |
| | | #!/usr/bin/env python |
| | | |
| | | # Adapt from -> |
| | | # -------------------------------------------------------- |
| | | # Fast R-CNN |
| | | # Copyright (c) 2015 Microsoft |
| | | # Licensed under The MIT License [see LICENSE for details] |
| | | # Written by Ross Girshick |
| | | # -------------------------------------------------------- |
| | | # <- Written by Yaping Sun |
| | | |
| | | """Reval = re-eval. Re-evaluate saved detections.""" |
| | | |
| | | import os, sys, argparse |
| | | import numpy as np |
| | | import _pickle as cPickle |
| | | #import cPickle |
| | | |
| | | from voc_eval_py3 import voc_eval |
| | | |
| | | def parse_args(): |
| | | """ |
| | | Parse input arguments |
| | | """ |
| | | parser = argparse.ArgumentParser(description='Re-evaluate results') |
| | | parser.add_argument('output_dir', nargs=1, help='results directory', |
| | | type=str) |
| | | parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) |
| | | parser.add_argument('--year', dest='year', default='2017', type=str) |
| | | parser.add_argument('--image_set', dest='image_set', default='test', type=str) |
| | | |
| | | parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) |
| | | |
| | | if len(sys.argv) == 1: |
| | | parser.print_help() |
| | | sys.exit(1) |
| | | |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | | def get_voc_results_file_template(image_set, out_dir = 'results'): |
| | | filename = 'comp4_det_' + image_set + '_{:s}.txt' |
| | | path = os.path.join(out_dir, filename) |
| | | return path |
| | | |
| | | def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): |
| | | annopath = os.path.join( |
| | | devkit_path, |
| | | 'VOC' + year, |
| | | 'Annotations', |
| | | '{}.xml') |
| | | imagesetfile = os.path.join( |
| | | devkit_path, |
| | | 'VOC' + year, |
| | | 'ImageSets', |
| | | 'Main', |
| | | image_set + '.txt') |
| | | cachedir = os.path.join(devkit_path, 'annotations_cache') |
| | | aps = [] |
| | | # The PASCAL VOC metric changed in 2010 |
| | | use_07_metric = True if int(year) < 2010 else False |
| | | print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) |
| | | print('devkit_path=',devkit_path,', year = ',year) |
| | | |
| | | if not os.path.isdir(output_dir): |
| | | os.mkdir(output_dir) |
| | | for i, cls in enumerate(classes): |
| | | if cls == '__background__': |
| | | continue |
| | | filename = get_voc_results_file_template(image_set).format(cls) |
| | | rec, prec, ap = voc_eval( |
| | | filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, |
| | | use_07_metric=use_07_metric) |
| | | aps += [ap] |
| | | print('AP for {} = {:.4f}'.format(cls, ap)) |
| | | with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: |
| | | cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) |
| | | print('Mean AP = {:.4f}'.format(np.mean(aps))) |
| | | print('~~~~~~~~') |
| | | print('Results:') |
| | | for ap in aps: |
| | | print('{:.3f}'.format(ap)) |
| | | print('{:.3f}'.format(np.mean(aps))) |
| | | print('~~~~~~~~') |
| | | print('') |
| | | print('--------------------------------------------------------------') |
| | | print('Results computed with the **unofficial** Python eval code.') |
| | | print('Results should be very close to the official MATLAB eval code.') |
| | | print('-- Thanks, The Management') |
| | | print('--------------------------------------------------------------') |
| | | |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | output_dir = os.path.abspath(args.output_dir[0]) |
| | | with open(args.class_file, 'r') as f: |
| | | lines = f.readlines() |
| | | |
| | | classes = [t.strip('\n') for t in lines] |
| | | |
| | | print('Evaluating detections') |
| | | do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) |
| New file |
| | |
| | | # -------------------------------------------------------- |
| | | # Fast/er R-CNN |
| | | # Licensed under The MIT License [see LICENSE for details] |
| | | # Written by Bharath Hariharan |
| | | # -------------------------------------------------------- |
| | | |
| | | import xml.etree.ElementTree as ET |
| | | import os |
| | | #import cPickle |
| | | import _pickle as cPickle |
| | | import numpy as np |
| | | |
| | | def parse_rec(filename): |
| | | """ Parse a PASCAL VOC xml file """ |
| | | tree = ET.parse(filename) |
| | | objects = [] |
| | | for obj in tree.findall('object'): |
| | | obj_struct = {} |
| | | obj_struct['name'] = obj.find('name').text |
| | | #obj_struct['pose'] = obj.find('pose').text |
| | | #obj_struct['truncated'] = int(obj.find('truncated').text) |
| | | obj_struct['difficult'] = int(obj.find('difficult').text) |
| | | bbox = obj.find('bndbox') |
| | | obj_struct['bbox'] = [int(bbox.find('xmin').text), |
| | | int(bbox.find('ymin').text), |
| | | int(bbox.find('xmax').text), |
| | | int(bbox.find('ymax').text)] |
| | | objects.append(obj_struct) |
| | | |
| | | return objects |
| | | |
| | | def voc_ap(rec, prec, use_07_metric=False): |
| | | """ ap = voc_ap(rec, prec, [use_07_metric]) |
| | | Compute VOC AP given precision and recall. |
| | | If use_07_metric is true, uses the |
| | | VOC 07 11 point method (default:False). |
| | | """ |
| | | if use_07_metric: |
| | | # 11 point metric |
| | | ap = 0. |
| | | for t in np.arange(0., 1.1, 0.1): |
| | | if np.sum(rec >= t) == 0: |
| | | p = 0 |
| | | else: |
| | | p = np.max(prec[rec >= t]) |
| | | ap = ap + p / 11. |
| | | else: |
| | | # correct AP calculation |
| | | # first append sentinel values at the end |
| | | mrec = np.concatenate(([0.], rec, [1.])) |
| | | mpre = np.concatenate(([0.], prec, [0.])) |
| | | |
| | | # compute the precision envelope |
| | | for i in range(mpre.size - 1, 0, -1): |
| | | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
| | | |
| | | # to calculate area under PR curve, look for points |
| | | # where X axis (recall) changes value |
| | | i = np.where(mrec[1:] != mrec[:-1])[0] |
| | | |
| | | # and sum (\Delta recall) * prec |
| | | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
| | | return ap |
| | | |
| | | def voc_eval(detpath, |
| | | annopath, |
| | | imagesetfile, |
| | | classname, |
| | | cachedir, |
| | | ovthresh=0.5, |
| | | use_07_metric=False): |
| | | """rec, prec, ap = voc_eval(detpath, |
| | | annopath, |
| | | imagesetfile, |
| | | classname, |
| | | [ovthresh], |
| | | [use_07_metric]) |
| | | |
| | | Top level function that does the PASCAL VOC evaluation. |
| | | |
| | | detpath: Path to detections |
| | | detpath.format(classname) should produce the detection results file. |
| | | annopath: Path to annotations |
| | | annopath.format(imagename) should be the xml annotations file. |
| | | imagesetfile: Text file containing the list of images, one image per line. |
| | | classname: Category name (duh) |
| | | cachedir: Directory for caching the annotations |
| | | [ovthresh]: Overlap threshold (default = 0.5) |
| | | [use_07_metric]: Whether to use VOC07's 11 point AP computation |
| | | (default False) |
| | | """ |
| | | # assumes detections are in detpath.format(classname) |
| | | # assumes annotations are in annopath.format(imagename) |
| | | # assumes imagesetfile is a text file with each line an image name |
| | | # cachedir caches the annotations in a pickle file |
| | | |
| | | # first load gt |
| | | if not os.path.isdir(cachedir): |
| | | os.mkdir(cachedir) |
| | | cachefile = os.path.join(cachedir, 'annots.pkl') |
| | | # read list of images |
| | | with open(imagesetfile, 'r') as f: |
| | | lines = f.readlines() |
| | | imagenames = [x.strip() for x in lines] |
| | | |
| | | if not os.path.isfile(cachefile): |
| | | # load annots |
| | | recs = {} |
| | | for i, imagename in enumerate(imagenames): |
| | | recs[imagename] = parse_rec(annopath.format(imagename)) |
| | | #if i % 100 == 0: |
| | | #print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames)) |
| | | # save |
| | | #print('Saving cached annotations to {:s}').format(cachefile) |
| | | with open(cachefile, 'wb') as f: |
| | | cPickle.dump(recs, f) |
| | | else: |
| | | # load |
| | | print('!!! cachefile = ',cachefile) |
| | | with open(cachefile, 'rb') as f: |
| | | recs = cPickle.load(f) |
| | | |
| | | # extract gt objects for this class |
| | | class_recs = {} |
| | | npos = 0 |
| | | for imagename in imagenames: |
| | | R = [obj for obj in recs[imagename] if obj['name'] == classname] |
| | | bbox = np.array([x['bbox'] for x in R]) |
| | | difficult = np.array([x['difficult'] for x in R]).astype(np.bool) |
| | | det = [False] * len(R) |
| | | npos = npos + sum(~difficult) |
| | | class_recs[imagename] = {'bbox': bbox, |
| | | 'difficult': difficult, |
| | | 'det': det} |
| | | |
| | | # read dets |
| | | detfile = detpath.format(classname) |
| | | with open(detfile, 'r') as f: |
| | | lines = f.readlines() |
| | | |
| | | splitlines = [x.strip().split(' ') for x in lines] |
| | | image_ids = [x[0] for x in splitlines] |
| | | confidence = np.array([float(x[1]) for x in splitlines]) |
| | | BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) |
| | | |
| | | # sort by confidence |
| | | sorted_ind = np.argsort(-confidence) |
| | | sorted_scores = np.sort(-confidence) |
| | | BB = BB[sorted_ind, :] |
| | | image_ids = [image_ids[x] for x in sorted_ind] |
| | | |
| | | # go down dets and mark TPs and FPs |
| | | nd = len(image_ids) |
| | | tp = np.zeros(nd) |
| | | fp = np.zeros(nd) |
| | | for d in range(nd): |
| | | R = class_recs[image_ids[d]] |
| | | bb = BB[d, :].astype(float) |
| | | ovmax = -np.inf |
| | | BBGT = R['bbox'].astype(float) |
| | | |
| | | if BBGT.size > 0: |
| | | # compute overlaps |
| | | # intersection |
| | | ixmin = np.maximum(BBGT[:, 0], bb[0]) |
| | | iymin = np.maximum(BBGT[:, 1], bb[1]) |
| | | ixmax = np.minimum(BBGT[:, 2], bb[2]) |
| | | iymax = np.minimum(BBGT[:, 3], bb[3]) |
| | | iw = np.maximum(ixmax - ixmin + 1., 0.) |
| | | ih = np.maximum(iymax - iymin + 1., 0.) |
| | | inters = iw * ih |
| | | |
| | | # union |
| | | uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + |
| | | (BBGT[:, 2] - BBGT[:, 0] + 1.) * |
| | | (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) |
| | | |
| | | overlaps = inters / uni |
| | | ovmax = np.max(overlaps) |
| | | jmax = np.argmax(overlaps) |
| | | |
| | | if ovmax > ovthresh: |
| | | if not R['difficult'][jmax]: |
| | | if not R['det'][jmax]: |
| | | tp[d] = 1. |
| | | R['det'][jmax] = 1 |
| | | else: |
| | | fp[d] = 1. |
| | | else: |
| | | fp[d] = 1. |
| | | |
| | | # compute precision recall |
| | | fp = np.cumsum(fp) |
| | | tp = np.cumsum(tp) |
| | | rec = tp / float(npos) |
| | | # avoid divide by zero in case the first detection matches a difficult |
| | | # ground truth |
| | | prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
| | | ap = voc_ap(rec, prec, use_07_metric) |
| | | |
| | | return rec, prec, ap |