i don't know what's going on anymore
| | |
| | | w = constrain(0, 1, w); |
| | | h = constrain(0, 1, h); |
| | | if (w == 0 || h == 0) continue; |
| | | w = sqrt(w); |
| | | h = sqrt(h); |
| | | if(1){ |
| | | w = sqrt(w); |
| | | h = sqrt(h); |
| | | } |
| | | |
| | | int index = (i+j*num_boxes)*(4+classes+background); |
| | | if(truth[index+classes+background+2]) continue; |
| | |
| | | |
| | | float sx = (float)swidth / ow; |
| | | float sy = (float)sheight / oh; |
| | | |
| | | |
| | | /* |
| | | float angle = rand_uniform()*.1 - .05; |
| | | image rot = rotate_image(orig, angle); |
| | | free_image(orig); |
| | | orig = rot; |
| | | */ |
| | | float angle = rand_uniform()*.1 - .05; |
| | | image rot = rotate_image(orig, angle); |
| | | free_image(orig); |
| | | orig = rot; |
| | | */ |
| | | |
| | | int flip = rand_r(&data_seed)%2; |
| | | image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
| | |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | float x = (pred.vals[j][ci + 0] + col)/num_boxes; |
| | | float y = (pred.vals[j][ci + 1] + row)/num_boxes; |
| | | float w = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | float h = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | h = h*h; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | |
| | | di.dx = dover.dx*h; |
| | | di.dh = dover.dh*w; |
| | | di.dy = dover.dy*w; |
| | | if(h < 0 || w < 0){ |
| | | di.dx = dover.dx; |
| | | di.dy = dover.dy; |
| | | } |
| | | |
| | | return di; |
| | | } |
| | | |
| | | dbox dunion(box a, box b) |
| | | { |
| | | dbox du = {0,0,0,0};; |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | if(w > 0 && h > 0){ |
| | | dbox di = dintersect(a, b); |
| | | du.dw = h - di.dw; |
| | | du.dh = w - di.dw; |
| | | du.dx = -di.dx; |
| | | du.dy = -di.dy; |
| | | } |
| | | dbox du; |
| | | |
| | | dbox di = dintersect(a, b); |
| | | du.dw = a.h - di.dw; |
| | | du.dh = a.w - di.dh; |
| | | du.dx = -di.dx; |
| | | du.dy = -di.dy; |
| | | |
| | | return du; |
| | | } |
| | | |
| | | dbox diou(box a, box b); |
| | | |
| | | void test_dunion() |
| | | { |
| | | box a = {0, 0, 1, 1}; |
| | | box dxa= {0+.0001, 0, 1, 1}; |
| | | box dya= {0, 0+.0001, 1, 1}; |
| | | box dwa= {0, 0, 1+.0001, 1}; |
| | | box dha= {0, 0, 1, 1+.0001}; |
| | | |
| | | box b = {.5, .5, .2, .2}; |
| | | dbox di = dunion(a,b); |
| | | printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); |
| | | float inter = box_union(a, b); |
| | | float xinter = box_union(dxa, b); |
| | | float yinter = box_union(dya, b); |
| | | float winter = box_union(dwa, b); |
| | | float hinter = box_union(dha, b); |
| | | xinter = (xinter - inter)/(.0001); |
| | | yinter = (yinter - inter)/(.0001); |
| | | winter = (winter - inter)/(.0001); |
| | | hinter = (hinter - inter)/(.0001); |
| | | printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter); |
| | | } |
| | | void test_dintersect() |
| | | { |
| | | box a = {0, 0, 1, 1}; |
| | | box dxa= {0+.0001, 0, 1, 1}; |
| | | box dya= {0, 0+.0001, 1, 1}; |
| | | box dwa= {0, 0, 1+.0001, 1}; |
| | | box dha= {0, 0, 1, 1+.0001}; |
| | | |
| | | box b = {.5, .5, .2, .2}; |
| | | dbox di = dintersect(a,b); |
| | | printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); |
| | | float inter = box_intersection(a, b); |
| | | float xinter = box_intersection(dxa, b); |
| | | float yinter = box_intersection(dya, b); |
| | | float winter = box_intersection(dwa, b); |
| | | float hinter = box_intersection(dha, b); |
| | | xinter = (xinter - inter)/(.0001); |
| | | yinter = (yinter - inter)/(.0001); |
| | | winter = (winter - inter)/(.0001); |
| | | hinter = (hinter - inter)/(.0001); |
| | | printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter); |
| | | } |
| | | |
| | | void test_box() |
| | | { |
| | | test_dintersect(); |
| | | test_dunion(); |
| | | box a = {0, 0, 1, 1}; |
| | | box dxa= {0+.00001, 0, 1, 1}; |
| | | box dya= {0, 0+.00001, 1, 1}; |
| | | box dwa= {0, 0, 1+.00001, 1}; |
| | | box dha= {0, 0, 1, 1+.00001}; |
| | | |
| | | box b = {.5, 0, .2, .2}; |
| | | |
| | | float iou = box_iou(a,b); |
| | | iou = (1-iou)*(1-iou); |
| | | printf("%f\n", iou); |
| | | dbox d = diou(a, b); |
| | | printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh); |
| | | |
| | | float xiou = box_iou(dxa, b); |
| | | float yiou = box_iou(dya, b); |
| | | float wiou = box_iou(dwa, b); |
| | | float hiou = box_iou(dha, b); |
| | | xiou = ((1-xiou)*(1-xiou) - iou)/(.00001); |
| | | yiou = ((1-yiou)*(1-yiou) - iou)/(.00001); |
| | | wiou = ((1-wiou)*(1-wiou) - iou)/(.00001); |
| | | hiou = ((1-hiou)*(1-hiou) - iou)/(.00001); |
| | | printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou); |
| | | /* |
| | | |
| | | while(count++ < 300){ |
| | | dbox d = diou(a, b); |
| | | printf("%f %f %f %f\n", a.x, a.y, a.w, a.h); |
| | | a.x += .1*d.dx; |
| | | a.w += .1*d.dw; |
| | | a.y += .1*d.dy; |
| | | a.h += .1*d.dh; |
| | | printf("inter: %f\n", box_intersection(a, b)); |
| | | printf("union: %f\n", box_union(a, b)); |
| | | printf("IOU: %f\n", box_iou(a, b)); |
| | | if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) { |
| | | printf("break!!!\n"); |
| | | break; |
| | | } |
| | | } |
| | | */ |
| | | } |
| | | |
| | | dbox diou(box a, box b) |
| | | { |
| | | float u = box_union(a,b); |
| | |
| | | dbox di = dintersect(a,b); |
| | | dbox du = dunion(a,b); |
| | | dbox dd = {0,0,0,0}; |
| | | if(i < 0) { |
| | | |
| | | if(i <= 0 || 1) { |
| | | dd.dx = b.x - a.x; |
| | | dd.dy = b.y - a.y; |
| | | dd.dw = b.w - a.w; |
| | | dd.dh = b.h - a.h; |
| | | return dd; |
| | | } |
| | | |
| | | dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); |
| | | dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); |
| | | dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); |
| | |
| | | return dd; |
| | | } |
| | | |
| | | void test_box() |
| | | { |
| | | box a = {1, 1, 1, 1}; |
| | | box b = {0, 0, .5, .2}; |
| | | int count = 0; |
| | | while(count++ < 300){ |
| | | dbox d = diou(a, b); |
| | | printf("%f %f %f %f\n", a.x, a.y, a.w, a.h); |
| | | a.x += .1*d.dx; |
| | | a.w += .1*d.dw; |
| | | a.y += .1*d.dy; |
| | | a.h += .1*d.dh; |
| | | printf("inter: %f\n", box_intersection(a, b)); |
| | | printf("union: %f\n", box_union(a, b)); |
| | | printf("IOU: %f\n", box_iou(a, b)); |
| | | if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) { |
| | | printf("break!!!\n"); |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, network_state state) |
| | | { |
| | | int in_i = 0; |
| | |
| | | layer.output[out_i++] = scale*state.input[in_i++]; |
| | | } |
| | | if(layer.nuisance){ |
| | | |
| | | |
| | | }else if(layer.background){ |
| | | softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background); |
| | | activate_array(state.input+in_i, layer.coords, LOGISTIC); |
| | |
| | | layer.output[out_i++] = mask*state.input[in_i++]; |
| | | } |
| | | } |
| | | if(layer.does_cost){ |
| | | if(layer.does_cost && state.train && 0){ |
| | | int count = 0; |
| | | float avg = 0; |
| | | *(layer.cost) = 0; |
| | | int size = get_detection_layer_output_size(layer) * layer.batch; |
| | | memset(layer.delta, 0, size * sizeof(float)); |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for (i = 0; i < layer.batch*locations; ++i) { |
| | | int classes = layer.nuisance+layer.classes; |
| | | int offset = i*(classes+layer.coords); |
| | | for(j = offset; j < offset+classes; ++j){ |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | *(layer.cost) += pow(state.truth[j] - layer.output[j], 2); |
| | | layer.delta[j] = state.truth[j] - layer.output[j]; |
| | | } |
| | |
| | | out.w = layer.output[j+2]; |
| | | out.h = layer.output[j+3]; |
| | | if(!(truth.w*truth.h)) continue; |
| | | float iou = box_iou(truth, out); |
| | | //printf("iou: %f\n", iou); |
| | | *(layer.cost) += pow((1-iou), 2); |
| | | dbox d = diou(out, truth); |
| | | layer.delta[j+0] = d.dx; |
| | | layer.delta[j+1] = d.dy; |
| | | layer.delta[j+2] = d.dw; |
| | | layer.delta[j+3] = d.dh; |
| | | |
| | | int sqr = 1; |
| | | if(sqr){ |
| | | truth.w *= truth.w; |
| | | truth.h *= truth.h; |
| | | out.w *= out.w; |
| | | out.h *= out.h; |
| | | } |
| | | float iou = box_iou(truth, out); |
| | | *(layer.cost) += pow((1-iou), 2); |
| | | avg += iou; |
| | | ++count; |
| | | } |
| | | fprintf(stderr, "Avg IOU: %f\n", avg/count); |
| | | } |
| | | /* |
| | | int count = 0; |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | //net.seen=0; |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | if((i % 20000) == 0) net.learning_rate *= .1; |
| | | //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; |
| | | if(i%1000==0){ |
| | | char buff[256]; |