9 files modified
1 files added
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o yoloplus.o |
| | | ifeq ($(GPU), 1) |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o |
| | | endif |
| | |
| | | activation=leaky |
| | | |
| | | [maxpool] |
| | | size=3 |
| | | size=2 |
| | | stride=2 |
| | | |
| | | [convolutional] |
| | |
| | | activation=leaky |
| | | |
| | | [maxpool] |
| | | size=3 |
| | | size=2 |
| | | stride=2 |
| | | |
| | | [convolutional] |
| | |
| | | activation=leaky |
| | | |
| | | [maxpool] |
| | | size=3 |
| | | size=2 |
| | | stride=2 |
| | | |
| | | [convolutional] |
| | |
| | | activation=leaky |
| | | |
| | | [maxpool] |
| | | size=3 |
| | | size=2 |
| | | stride=2 |
| | | |
| | | [convolutional] |
| | |
| | | activation=leaky |
| | | |
| | | [maxpool] |
| | | size=3 |
| | | size=2 |
| | | stride=2 |
| | | |
| | | [convolutional] |
| | |
| | | activation=leaky |
| | | |
| | | [maxpool] |
| | | size=3 |
| | | size=2 |
| | | stride=2 |
| | | |
| | | [convolutional] |
| | |
| | | |
| | | [connected] |
| | | output=1000 |
| | | activation=linear |
| | | activation=leaky |
| | | |
| | | [softmax] |
| | | |
| | |
| | | height=448 |
| | | width=448 |
| | | channels=3 |
| | | learning_rate=0.01 |
| | | learning_rate=0.001 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | |
| | | policy=steps |
| | | steps=50, 5000 |
| | | scales=10, .1 |
| | | max_batches = 8000 |
| | | |
| | | [crop] |
| | | crop_width=448 |
| | | crop_height=448 |
| | |
| | | |
| | | extern void run_imagenet(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_yoloplus(int argc, char **argv); |
| | | extern void run_coco(int argc, char **argv); |
| | | extern void run_writing(int argc, char **argv); |
| | | extern void run_captcha(int argc, char **argv); |
| | |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yolo")){ |
| | | run_yolo(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yoloplus")){ |
| | | run_yoloplus(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "compare")){ |
| | |
| | | int size = get_detection_layer_output_size(l) * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < l.batch*locations; ++i) { |
| | | int classes = l.objectness+l.classes; |
| | | int classes = (l.objectness || l.background)+l.classes; |
| | | int offset = i*(classes+l.coords); |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | *(l.cost) += pow(state.truth[j] - l.output[j], 2); |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | if(l.background && j == offset) l.delta[j] *= .1; |
| | | } |
| | | |
| | | box truth; |
| | |
| | | l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); |
| | | l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); |
| | | if(l.rescore){ |
| | | if(l.objectness){ |
| | | state.truth[offset] = iou; |
| | | l.delta[offset] = state.truth[offset] - l.output[offset]; |
| | | } |
| | | else{ |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | if(state.truth[j]) state.truth[j] = iou; |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | printf("Avg IOU: %f\n", avg_iou/count); |
| | | } |
| | | } |
| | |
| | | float get_current_rate(network net) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | | int i; |
| | | float rate; |
| | | switch (net.policy) { |
| | | case CONSTANT: |
| | | return net.learning_rate; |
| | | case STEP: |
| | | return net.learning_rate * pow(net.gamma, batch_num/net.step); |
| | | return net.learning_rate * pow(net.scale, batch_num/net.step); |
| | | case STEPS: |
| | | rate = net.learning_rate; |
| | | for(i = 0; i < net.num_steps; ++i){ |
| | | if(net.steps[i] > batch_num) return rate; |
| | | rate *= net.scales[i]; |
| | | } |
| | | return rate; |
| | | case EXP: |
| | | return net.learning_rate * pow(net.gamma, batch_num); |
| | | case POLY: |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1/(1+exp(net.gamma*(batch_num - net.step)))); |
| | | default: |
| | | fprintf(stderr, "Policy is weird!\n"); |
| | | return net.learning_rate; |
| | |
| | | #include "data.h" |
| | | |
| | | typedef enum { |
| | | CONSTANT, STEP, EXP, POLY |
| | | CONSTANT, STEP, EXP, POLY, STEPS, SIG |
| | | } learning_rate_policy; |
| | | |
| | | typedef struct { |
| | |
| | | |
| | | float learning_rate; |
| | | float gamma; |
| | | float scale; |
| | | float power; |
| | | int step; |
| | | int max_batches; |
| | | float *scales; |
| | | int *steps; |
| | | int num_steps; |
| | | |
| | | int inputs; |
| | | int h, w, c; |
| | |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int joint = option_find_int(options, "joint", 0); |
| | | int objectness = option_find_int(options, "objectness", 0); |
| | | int background = 0; |
| | | int background = option_find_int(options, "background", 0); |
| | | detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); |
| | | return layer; |
| | | } |
| | |
| | | if (strcmp(s, "constant")==0) return CONSTANT; |
| | | if (strcmp(s, "step")==0) return STEP; |
| | | if (strcmp(s, "exp")==0) return EXP; |
| | | if (strcmp(s, "sigmoid")==0) return SIG; |
| | | if (strcmp(s, "steps")==0) return STEPS; |
| | | fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); |
| | | return CONSTANT; |
| | | } |
| | |
| | | net->policy = get_policy(policy_s); |
| | | if(net->policy == STEP){ |
| | | net->step = option_find_int(options, "step", 1); |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->scale = option_find_float(options, "scale", 1); |
| | | } else if (net->policy == STEPS){ |
| | | char *l = option_find(options, "steps"); |
| | | char *p = option_find(options, "scales"); |
| | | if(!l || !p) error("STEPS policy must have steps and scales in cfg file"); |
| | | |
| | | int len = strlen(l); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (l[i] == ',') ++n; |
| | | } |
| | | int *steps = calloc(n, sizeof(int)); |
| | | float *scales = calloc(n, sizeof(float)); |
| | | for(i = 0; i < n; ++i){ |
| | | int step = atoi(l); |
| | | float scale = atof(p); |
| | | l = strchr(l, ',')+1; |
| | | p = strchr(p, ',')+1; |
| | | steps[i] = step; |
| | | scales[i] = scale; |
| | | } |
| | | net->scales = scales; |
| | | net->steps = steps; |
| | | net->num_steps = n; |
| | | } else if (net->policy == EXP){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | } else if (net->policy == SIG){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->step = option_find_int(options, "step", 1); |
| | | } else if (net->policy == POLY){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | } |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 128; |
| | | int i = *net.seen/imgs; |
| | | |
| | |
| | | int N = plist->size; |
| | | paths = (char **)list_to_array(plist); |
| | | |
| | | if(i*imgs > N*80){ |
| | | net.layers[net.n-1].joint = 1; |
| | | net.layers[net.n-1].objectness = 0; |
| | | } |
| | | if(i*imgs > N*120){ |
| | | net.layers[net.n-1].rescore = 1; |
| | | } |
| | |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | while(i*imgs < N*130){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images, epoch: %f\n", i, loss, avg_loss, sec(clock()-time), i*imgs, ((float)i)*imgs/N); |
| | | |
| | | if((i-1)*imgs <= N && i*imgs > N){ |
| | | fprintf(stderr, "First stage done\n"); |
| | | net.learning_rate *= 10; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | printf("%d: %f, %f avg, %lf seconds, %f rate, %d images, epoch: %f\n", get_current_batch(net), loss, avg_loss, sec(clock()-time), get_current_rate(net), *net.seen, (float)*net.seen/N); |
| | | |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | net.learning_rate *= .1; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| New file |
| | |
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void draw_yoloplus(image im, float *box, int side, int objectness, char *label, float thresh) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+objectness; |
| | | int j; |
| | | int r, c; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | float scale = 1; |
| | | if(objectness) scale = 1 - box[j++]; |
| | | int class = max_index(box+j, classes); |
| | | if(scale * box[j+class] > thresh){ |
| | | int width = sqrt(scale*box[j+class])*5 + 1; |
| | | printf("%f %s\n", scale * box[j+class], voc_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, label); |
| | | } |
| | | |
| | | void train_yoloplus(char *cfgfile, char *weightfile) |
| | | { |
| | | char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | int imgs = 128; |
| | | int i = *net.seen/imgs; |
| | | |
| | | char **paths; |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | paths = (char **)list_to_array(plist); |
| | | |
| | | if(i*imgs > N*120){ |
| | | net.layers[net.n-1].rescore = 1; |
| | | } |
| | | data train, buffer; |
| | | |
| | | int classes = layer.classes; |
| | | int background = layer.objectness; |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.paths = paths; |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.num_boxes = side; |
| | | args.background = background; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_in_thread(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %f rate, %d images, epoch: %f\n", get_current_batch(net), loss, avg_loss, sec(clock()-time), get_current_rate(net), *net.seen, (float)*net.seen/N); |
| | | |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | net.layers[net.n-1].joint = 1; |
| | | net.layers[net.n-1].objectness = 0; |
| | | background = 0; |
| | | |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | args.background = background; |
| | | load_thread = load_data_in_thread(args); |
| | | } |
| | | |
| | | if((i-1)*imgs <= 120*N && i*imgs > N*120){ |
| | | fprintf(stderr, "Third stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | net.layers[net.n-1].rescore = 1; |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_rescore.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_yoloplus_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) |
| | | { |
| | | int i,j; |
| | | int per_box = 4+classes+(background || objectness); |
| | | for (i = 0; i < num_boxes*num_boxes; ++i){ |
| | | float scale = 1; |
| | | if(objectness) scale = 1-predictions[i*per_box]; |
| | | int offset = i*per_box+(background||objectness); |
| | | for(j = 0; j < classes; ++j){ |
| | | float prob = scale*predictions[offset+j]; |
| | | probs[i][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | int row = i / num_boxes; |
| | | int col = i % num_boxes; |
| | | offset += classes; |
| | | boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w; |
| | | boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h; |
| | | boxes[i].w = pow(predictions[offset + 2], 2) * w; |
| | | boxes[i].h = pow(predictions[offset + 3], 2) * h; |
| | | } |
| | | } |
| | | |
| | | void print_yoloplus_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < num_boxes*num_boxes; ++i){ |
| | | float xmin = boxes[i].x - boxes[i].w/2.; |
| | | float xmax = boxes[i].x + boxes[i].w/2.; |
| | | float ymin = boxes[i].y - boxes[i].h/2.; |
| | | float ymax = boxes[i].y + boxes[i].h/2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void validate_yoloplus(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | | int objectness = layer.objectness; |
| | | int background = layer.background; |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(num_boxes*num_boxes, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | | int t; |
| | | |
| | | float thresh = .001; |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | | int nthreads = 8; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | | image *buf = calloc(nthreads, sizeof(image)); |
| | | image *buf_resized = calloc(nthreads, sizeof(image)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | for(t = 0; t < nthreads; ++t){ |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | time_t start = time(0); |
| | | for(i = nthreads; i < m+nthreads; i += nthreads){ |
| | | fprintf(stderr, "%d\n", i); |
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | val_resized[t] = buf_resized[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i+t < m; ++t){ |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
| | | char *path = paths[i+t-nthreads]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | float *predictions = network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_yoloplus_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, num_boxes*num_boxes, classes, iou_thresh); |
| | | print_yoloplus_detections(fps, id, boxes, probs, num_boxes, classes, w, h); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | | } |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_yoloplus(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char input[256]; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | } else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | fgets(input, 256, stdin); |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input,0,0); |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_yoloplus(im, predictions, 7, layer.objectness, "predictions", thresh); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | cvDestroyAllWindows(); |
| | | #endif |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | void run_yoloplus(int argc, char **argv) |
| | | { |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_yoloplus(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_yoloplus(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_yoloplus(cfg, weights); |
| | | } |