It's time, to du-du-du-du-DU-DU-DUEL!!
https://www.youtube.com/watch?v=IVmtUK_1jh4
| | |
| | | return thread; |
| | | } |
| | | |
| | | matrix concat_matrix(matrix m1, matrix m2) |
| | | { |
| | | int i, count = 0; |
| | | matrix m; |
| | | m.cols = m1.cols; |
| | | m.rows = m1.rows+m2.rows; |
| | | m.vals = calloc(m1.rows + m2.rows, sizeof(float*)); |
| | | for(i = 0; i < m1.rows; ++i){ |
| | | m.vals[count++] = m1.vals[i]; |
| | | } |
| | | for(i = 0; i < m2.rows; ++i){ |
| | | m.vals[count++] = m2.vals[i]; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | data concat_data(data d1, data d2) |
| | | { |
| | | data d; |
| | | d.shallow = 1; |
| | | d.X = concat_matrix(d1.X, d2.X); |
| | | d.y = concat_matrix(d1.y, d2.y); |
| | | return d; |
| | | } |
| | | |
| | | data load_categorical_data_csv(char *filename, int target, int k) |
| | | { |
| | | data d; |
| | |
| | | void translate_data_rows(data d, float s); |
| | | void randomize_data(data d); |
| | | data *split_data(data d, int part, int total); |
| | | data concat_data(data d1, data d2); |
| | | |
| | | #endif |
| | |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | |
| | | } |
| | | } |
| | | |
| | | void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
| | | { |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
| | | } |
| | | } |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void validate_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 100; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | fprintf(stderr, "%d\n", m); |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.w, net.h, &buffer); |
| | | int nthreads = 4; |
| | | int t; |
| | | data *val = calloc(nthreads, sizeof(data)); |
| | | data *buf = calloc(nthreads, sizeof(data)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(data)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | clock_t time; |
| | | for(i = 1; i <= splits; ++i){ |
| | | for(i = nthreads; i <= splits; i += nthreads){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &buffer); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i < splits; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < .001) continue; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, prob, y, x, h, w); |
| | | } |
| | | } |
| | | for(t = 0; t < nthreads; ++t){ |
| | | predict_detections(net, val[t], .01, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | time=clock(); |
| | | free_data(val); |
| | | } |
| | | } |
| | | |
| | |
| | | exit(0); |
| | | } |
| | | image out = ipl_to_image(src); |
| | | cvReleaseImage(&src); |
| | | if((h && w) && (h != out.h || w != out.w)){ |
| | | image resized = resize_image(out, w, h); |
| | | free_image(out); |
| | | out = resized; |
| | | } |
| | | cvReleaseImage(&src); |
| | | return out; |
| | | } |
| | | |
| | |
| | | fread(&net->momentum, sizeof(float), 1, fp); |
| | | fread(&net->decay, sizeof(float), 1, fp); |
| | | fread(&net->seen, sizeof(int), 1, fp); |
| | | fprintf(stderr, "%f %f %f %d\n", net->learning_rate, net->momentum, net->decay, net->seen); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |