| | |
| | | [net] |
| | | batch=64 |
| | | subdivisions=1 |
| | | batch=128 |
| | | subdivisions=2 |
| | | height=256 |
| | | width=256 |
| | | channels=3 |
| | | learning_rate=0.00001 |
| | | learning_rate=0.0000001 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | seen=0 |
| | |
| | | |
| | | [convolutional] |
| | | filters=1 |
| | | size=5 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=logistic |
| | |
| | | *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
| | | } else if (a.type == DETECTION_DATA){ |
| | | *a.d = load_data_detection(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background); |
| | | } else if (a.type == WRITING_DATA){ |
| | | *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.downsample); |
| | | } else if (a.type == REGION_DATA){ |
| | | *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes); |
| | | } else if (a.type == COMPARE_DATA){ |
| | |
| | | } data; |
| | | |
| | | typedef enum { |
| | | CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA |
| | | CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA |
| | | } data_type; |
| | | |
| | | typedef struct load_args{ |
| | |
| | | char **labels; |
| | | int h; |
| | | int w; |
| | | int downsample; |
| | | int nh; |
| | | int nw; |
| | | int num_boxes; |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = *net.seen/imgs; |
| | | int imgs = net.batch*net.subdivisions; |
| | | list *plist = get_paths("figures.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | ++i; |
| | | int N = plist->size; |
| | | printf("N: %d\n", N); |
| | | |
| | | data train, buffer; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.paths = paths; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.downsample = 1; |
| | | args.d = &buffer; |
| | | args.type = WRITING_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | data train = load_data_writing(paths, imgs, plist->size, 256, 256, 1); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_in_thread(args); |
| | | printf("Loaded %lf seconds\n",sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | |
| | |
| | | |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen); |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | free_data(train); |
| | | //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; |
| | | if(i%1000==0){ |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | //TODO |
| | | if(get_current_batch(net)%10 == 0) |
| | | save_weights(net, buff); |
| | | } |
| | | } |