3 files modified
2 files added
| | |
| | | GPU=0 |
| | | OPENCV=0 |
| | | GPU=1 |
| | | OPENCV=1 |
| | | DEBUG=0 |
| | | |
| | | ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 |
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o |
| | | ifeq ($(GPU), 1) |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o |
| | | endif |
| New file |
| | |
| | | mkdir -p images |
| | | mkdir -p images/orig |
| | | mkdir -p images/train |
| | | mkdir -p images/val |
| | | |
| | | ffmpeg -i Face1.mp4 images/orig/face1_%6d.jpg |
| | | ffmpeg -i Face2.mp4 images/orig/face2_%6d.jpg |
| | | ffmpeg -i Face3.mp4 images/orig/face3_%6d.jpg |
| | | ffmpeg -i Face4.mp4 images/orig/face4_%6d.jpg |
| | | ffmpeg -i Face5.mp4 images/orig/face5_%6d.jpg |
| | | ffmpeg -i Face6.mp4 images/orig/face6_%6d.jpg |
| | | |
| | | mogrify -resize 100x100^ -gravity center -crop 100x100+0+0 +repage images/orig/* |
| | | |
| | | ls images/orig/* | shuf | head -n 1000 | xargs mv -t images/val |
| | | mv images/orig/* images/train |
| | | |
| | | find `pwd`/images/train > dice.train.list -name \*.jpg |
| | | find `pwd`/images/val > dice.val.list -name \*.jpg |
| | | |
| | |
| | | extern void run_writing(int argc, char **argv); |
| | | extern void run_captcha(int argc, char **argv); |
| | | extern void run_nightmare(int argc, char **argv); |
| | | extern void run_dice(int argc, char **argv); |
| | | |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | |
| | | run_detection(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "dice")){ |
| | | run_dice(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "writing")){ |
| | | run_writing(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "test")){ |
| New file |
| | |
| | | #include "network.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"}; |
| | | |
| | | void train_dice(char *cfgfile, char *weightfile) |
| | | { |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | char **labels = dice_labels; |
| | | list *plist = get_paths("data/dice/dice.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | ++i; |
| | | time=clock(); |
| | | data train = load_data(paths, imgs, plist->size, labels, 6, net.w, net.h); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | if((i % 100) == 0) net.learning_rate *= .1; |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void validate_dice(char *filename, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(filename); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | char **labels = dice_labels; |
| | | list *plist = get_paths("data/dice/dice.val.list"); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | data val = load_data(paths, m, 0, labels, 6, net.w, net.h); |
| | | float *acc = network_accuracies(net, val); |
| | | printf("Validation Accuracy: %f, %d images\n", acc[0], m); |
| | | free_data(val); |
| | | } |
| | | |
| | | void test_dice(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char **names = dice_labels; |
| | | char input[256]; |
| | | int indexes[6]; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | }else{ |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | fgets(input, 256, stdin); |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, net.w, net.h); |
| | | float *X = im.data; |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 6, indexes); |
| | | for(i = 0; i < 6; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | } |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | void run_dice(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights); |
| | | } |
| | | |
| | |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | |
| | | if((i % 30000) == 0) net.learning_rate *= .1; |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |