6 files modified
1 files added
| New file |
| | |
| | | [net] |
| | | batch=64 |
| | | subdivisions=1 |
| | | height=256 |
| | | width=256 |
| | | channels=3 |
| | | learning_rate=0.00001 |
| | | momentum=0.9 |
| | | decay=0.0005 |
| | | seen=0 |
| | | |
| | | [crop] |
| | | crop_height=256 |
| | | crop_width=256 |
| | | flip=0 |
| | | angle=0 |
| | | saturation=1 |
| | | exposure=1 |
| | | |
| | | [convolutional] |
| | | filters=32 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=ramp |
| | | |
| | | [convolutional] |
| | | filters=32 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=ramp |
| | | |
| | | [convolutional] |
| | | filters=32 |
| | | size=3 |
| | | stride=1 |
| | | pad=1 |
| | | activation=ramp |
| | | |
| | | [convolutional] |
| | | filters=1 |
| | | size=5 |
| | | stride=1 |
| | | pad=1 |
| | | activation=logistic |
| | | |
| | | [cost] |
| | | |
| | |
| | | X.cols = 0; |
| | | |
| | | for(i = 0; i < n; ++i){ |
| | | image im = load_image(paths[i], w, h, 1); |
| | | image im = load_image(paths[i], w, h, 3); |
| | | |
| | | image gray = grayscale_image(im); |
| | | free_image(im); |
| | | im = gray; |
| | | |
| | | X.vals[i] = im.data; |
| | | X.cols = im.h*im.w*im.c; |
| | | } |
| | |
| | | return thread; |
| | | } |
| | | |
| | | data load_data_writing(char **paths, int n, int m, int w, int h) |
| | | data load_data_writing(char **paths, int n, int m, int w, int h, int downsample) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, w, h); |
| | | d.y = load_image_paths_gray(replace_paths, n, w/8, h/8); |
| | | d.y = load_image_paths_gray(replace_paths, n, w/downsample, h/downsample); |
| | | if(m) free(paths); |
| | | int i; |
| | | for(i = 0; i < n; ++i) free(replace_paths[i]); |
| | |
| | | data load_cifar10_data(char *filename); |
| | | data load_all_cifar10(); |
| | | |
| | | data load_data_writing(char **paths, int n, int m, int w, int h); |
| | | data load_data_writing(char **paths, int n, int m, int w, int h, int downsample); |
| | | |
| | | list *get_paths(char *filename); |
| | | char **get_labels(char *filename); |
| | |
| | | { |
| | | assert(im.c == 3); |
| | | int i, j, k; |
| | | image gray = make_image(im.w, im.h, im.c); |
| | | image gray = make_image(im.w, im.h, 1); |
| | | float scale[] = {0.587, 0.299, 0.114}; |
| | | for(k = 0; k < im.c; ++k){ |
| | | for(j = 0; j < im.h; ++j){ |
| | |
| | | } |
| | | } |
| | | } |
| | | memcpy(gray.data + im.w*im.h*1, gray.data, sizeof(float)*im.w*im.h); |
| | | memcpy(gray.data + im.w*im.h*2, gray.data, sizeof(float)*im.w*im.h); |
| | | return gray; |
| | | } |
| | | |
| | |
| | | if(state.train){ |
| | | float avg_iou = 0; |
| | | float avg_cat = 0; |
| | | float avg_allcat = 0; |
| | | float avg_obj = 0; |
| | | float avg_anyobj = 0; |
| | | int count = 0; |
| | |
| | | l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); |
| | | *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); |
| | | if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; |
| | | avg_allcat += l.output[class_index+j]; |
| | | } |
| | | |
| | | box truth = float_to_box(state.truth + truth_index + 1 + l.classes); |
| | |
| | | LOGISTIC, l.delta + index + locations*l.classes); |
| | | } |
| | | } |
| | | printf("Region Avg IOU: %f, Avg Cat Pred: %f, Avg Obj: %f, Avg Any: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
| | | printf("Region Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
| | | } |
| | | } |
| | | |
| | |
| | | void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes) |
| | | { |
| | | int i,j,n; |
| | | int per_cell = 5*num+classes; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int offset = i*per_cell + 5*n; |
| | | float scale = predictions[offset]; |
| | | int index = i*num + n; |
| | | boxes[index].x = (predictions[offset + 1] + col) / side * w; |
| | | boxes[index].y = (predictions[offset + 2] + row) / side * h; |
| | | boxes[index].w = pow(predictions[offset + 3], (square?2:1)) * w; |
| | | boxes[index].h = pow(predictions[offset + 4], (square?2:1)) * h; |
| | | int p_index = side*side*classes + i*num + n; |
| | | float scale = predictions[p_index]; |
| | | int box_index = side*side*(classes + num) + (i*num + n)*4; |
| | | boxes[index].x = (predictions[box_index + 0] + col) / side * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row) / side * h; |
| | | boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w; |
| | | boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h; |
| | | for(j = 0; j < classes; ++j){ |
| | | offset = i*per_cell + 5*num; |
| | | float prob = scale*predictions[offset+j]; |
| | | int class_index = i*classes; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | } |
| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | void train_writing(char *cfgfile, char *weightfile) |
| | | { |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | |
| | | while(1){ |
| | | ++i; |
| | | time=clock(); |
| | | data train = load_data_writing(paths, imgs, plist->size, 512, 512); |
| | | data train = load_data_writing(paths, imgs, plist->size, 256, 256, 1); |
| | | printf("Loaded %lf seconds\n",sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | #ifdef GPU |
| | | float *out = get_network_output_gpu(net); |
| | | #else |
| | | float *out = get_network_output(net); |
| | | #endif |
| | | |
| | | /* |
| | | image pred = float_to_image(64, 64, 1, out); |
| | | print_image(pred); |
| | | */ |
| | | |
| | | /* |
| | | image im = float_to_image(256, 256, 3, train.X.vals[0]); |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen); |
| | | free_data(train); |
| | | if((i % 20000) == 0) net.learning_rate *= .1; |
| | | //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void test_writing(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char filename[256]; |
| | | |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 0, 0); |
| | | //image im = load_image_color("/home/pjreddie/darknet/data/figs/C02-1001-Figure-1.png", 0, 0); |
| | | image sized = resize_image(im, net.w, net.h); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | image pred = get_network_image(net); |
| | | |
| | | if (outfile) { |
| | | printf("Save image as %s.png (shape: %d %d)\n", outfile, pred.w, pred.h); |
| | | save_image(pred, outfile); |
| | | } else { |
| | | show_image(pred, "prediction"); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | cvDestroyAllWindows(); |
| | | #endif |
| | | } |
| | | |
| | | free_image(im); |
| | | free_image(sized); |
| | | } |
| | | |
| | | void run_writing(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *outfile = (argc > 5) ? argv[5] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_writing(cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, outfile); |
| | | } |
| | | |