| New file |
| | |
| | | import cv2 |
| | | import numpy as np |
| | | import os |
| | | import sys |
| | | |
| | | |
| | | # Disclaimer: majority of the basic framework in this file is modified from the following tutorial: |
| | | # https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/ |
| | | |
| | | |
| | | # Get the names of the output layers |
| | | def get_outputs_names(net): |
| | | # Get the names of all the layers in the network |
| | | layers_names = net.getLayerNames() |
| | | # Get the names of the output layers, i.e. the layers with unconnected outputs |
| | | return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
| | | |
| | | |
| | | # Remove the bounding boxes with low confidence using non-maxima suppression |
| | | def postprocess(frame, outs, classes, thresh_conf, thresh_nms): |
| | | frame_height = frame.shape[0] |
| | | frame_width = frame.shape[1] |
| | | |
| | | # Scan through all the bounding boxes output from the network and keep only the |
| | | # ones with high confidence scores. Assign the box's class label as the class with the highest score. |
| | | class_ids = [] |
| | | confidences = [] |
| | | boxes = [] |
| | | for out in outs: |
| | | for detection in out: |
| | | scores = detection[5:] |
| | | class_id = np.argmax(scores) |
| | | confidence = scores[class_id] |
| | | if confidence > thresh_conf: |
| | | center_x = int(detection[0] * frame_width) |
| | | center_y = int(detection[1] * frame_height) |
| | | width = int(detection[2] * frame_width) |
| | | height = int(detection[3] * frame_height) |
| | | left = int(center_x - width / 2) |
| | | top = int(center_y - height / 2) |
| | | class_ids.append(class_id) |
| | | confidences.append(float(confidence)) |
| | | boxes.append([left, top, width, height]) |
| | | |
| | | # Perform non maximum suppression to eliminate redundant overlapping boxes with |
| | | # lower confidences. |
| | | indices = cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms) |
| | | for i in indices: |
| | | i = i[0] |
| | | box = boxes[i] |
| | | left = box[0] |
| | | top = box[1] |
| | | width = box[2] |
| | | height = box[3] |
| | | draw_pred(frame, class_ids[i], classes, confidences[i], left, top, left + width, top + height) |
| | | |
| | | |
| | | # Draw the predicted bounding box |
| | | def draw_pred(frame, class_id, classes, conf, left, top, right, bottom): |
| | | # Draw a bounding box. |
| | | cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) |
| | | |
| | | label = '%.2f' % conf |
| | | |
| | | # Get the label for the class name and its confidence |
| | | if classes: |
| | | assert (class_id < len(classes)) |
| | | label = '%s:%s' % (classes[class_id], label) |
| | | |
| | | # Display the label at the top of the bounding box |
| | | label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
| | | top = max(top, label_size[1]) |
| | | cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
| | | |
| | | |
| | | def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None): |
| | | # Create a 4D blob from a frame. |
| | | blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) |
| | | |
| | | # Sets the input to the network |
| | | net.setInput(blob) |
| | | |
| | | # Runs the forward pass to get output of the output layers |
| | | outs = net.forward(get_outputs_names(net)) |
| | | |
| | | # Remove the bounding boxes with low confidence |
| | | postprocess(img, outs, classes, thresh_conf, thresh_nms) |
| | | |
| | | # Put efficiency information. The function getPerfProfile returns the |
| | | # overall time for inference(t) and the timings for each of the layers(in layersTimes) |
| | | t, _ = net.getPerfProfile() |
| | | label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) |
| | | cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
| | | |
| | | if out_path is not None: |
| | | cv2.imwrite(out_path, img.astype(np.uint8)) |
| | | |
| | | |
| | | def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None): |
| | | if out_path is not None: |
| | | vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30, |
| | | (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), |
| | | round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))) |
| | | while True: |
| | | ret, frame = capture.read() |
| | | if not ret: |
| | | # End of video |
| | | print("End of video. Press any key to exit") |
| | | cv2.waitKey(0) |
| | | break |
| | | ''' |
| | | # Create a 4D blob from a frame. |
| | | blob = cv2.dnn.blobFromImage(frame, 1 / 255, in_dim, [0, 0, 0], 1, crop=False) |
| | | |
| | | # Sets the input to the network |
| | | net.setInput(blob) |
| | | |
| | | # Runs the forward pass to get output of the output layers |
| | | outs = net.forward(get_outputs_names(net)) |
| | | |
| | | # Remove the bounding boxes with low confidence |
| | | postprocess(frame, outs, classes, thresh_conf, thresh_nms) |
| | | |
| | | # Put efficiency information. The function getPerfProfile returns the |
| | | # overall time for inference(t) and the timings for each of the layers(in layersTimes) |
| | | t, _ = net.getPerfProfile() |
| | | label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency()) |
| | | cv2.putText(frame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
| | | ''' |
| | | detect_frame(net, classes, frame, |
| | | thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim, out_path=None) |
| | | cv2.imshow('result', frame) |
| | | if out_path is not None: |
| | | vid_writer.write(frame.astype(np.uint8)) |
| | | cv2.waitKey(1) |
| | | |
| | | if out_path is not None: |
| | | vid_writer.release() |
| | | cv2.destroyAllWindows() |
| | | pass |
| | | |
| | | |
| | | def main(): |
| | | # Specify paths for all necessary files |
| | | test_path = '../data/test1.mp4' |
| | | weight_path = 'weights/second_general/tiny_yolo_final.weights' |
| | | cfg_path = 'cfg/tiny_yolo.cfg' |
| | | class_path = "data/obj.names" |
| | | out_dir = 'out' |
| | | if not os.path.isfile(test_path): |
| | | print('The test file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | if not os.path.isfile(weight_path): |
| | | print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | if not os.path.isfile(cfg_path): |
| | | print('The config file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | if not os.path.isfile(class_path): |
| | | print('The class file %s doesn\'t exist!' % os.path.abspath(test_path)) |
| | | |
| | | # Setup |
| | | # Read class names from text file |
| | | with open(class_path, 'r') as f: |
| | | classes = [line.strip() for line in f.readlines()] |
| | | # Load up the neural net using the config and weights |
| | | net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path) |
| | | #net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) |
| | | #net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) |
| | | |
| | | # Save the detection result if out_dir is provided |
| | | if out_dir is None or out_dir == '': |
| | | out_path = None |
| | | else: |
| | | out_path = out_dir + '/' + os.path.split(test_path)[1] |
| | | # Check if test file is image or video |
| | | test_ext = test_path[test_path.find('.') + 1:] |
| | | if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']: |
| | | img = cv2.imread(test_path) |
| | | detect_frame(net, classes, img, out_path=out_path) |
| | | else: |
| | | capture = cv2.VideoCapture(test_path) |
| | | detect_video(net, classes, capture, out_path=out_path) |
| | | capture.release() |
| | | pass |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |