| | |
| | | 6. [When should I stop training](#when-should-i-stop-training) |
| | | 7. [How to improve object detection](#how-to-improve-object-detection) |
| | | 8. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files) |
| | | 9. [How to use Yolo as DLL](#how-to-use-yolo-as-dll) |
| | | 9. [Using Yolo9000](#using_yolo9000) |
| | | 10. [How to use Yolo as DLL](#how-to-use-yolo-as-dll) |
| | | |
| | | |  |  https://arxiv.org/abs/1612.08242 | |
| | | |---|---| |
| | |
| | | |
| | | With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2 |
| | | |
| | | ## Using Yolo9000 |
| | | |
| | | Simultaneous detection and classification of 9000 objects: |
| | | |
| | | * `9k.tree` - **WordTree** of 9418 categories - `<label> <parent_it>`, if `parent_id == -1` then this label hasn't parent: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.tree |
| | | |
| | | * `coco9k.map` - map 80 categories from MSCOCO to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/coco9k.map |
| | | |
| | | * `combine9k.data` - data file, there are paths to: 9k.labels, 9k.names, inet9k.map, (change path to your `combine9k.train.list`): https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/combine9k.data |
| | | |
| | | * `9k.labels` - 9418 labels of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.labels |
| | | |
| | | * `9k.names` - |
| | | 9418 names of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.names |
| | | |
| | | * `inet9k.map` - map 200 categories from ImageNet to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/inet9k.map |
| | | |
| | | * `yolo9000.cfg` - cfg-file of the Yolo9000, also there are paths to the `9k.tree` and `coco9k.map` https://github.com/AlexeyAB/darknet/blob/617cf313ccb1fe005db3f7d88dec04a04bd97cc2/cfg/yolo9000.cfg#L217-L218 |
| | | |
| | | * `yolo9000.weights` - (186 MB Yolo9000-model) requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights |
| | | |
| | | ## How to use Yolo as DLL |
| | | |
| | | 1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll |