| | |
| | | * Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app |
| | | * To process a list of images `data/train.txt` and save results of detection to `result.txt` use: |
| | | `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show -ext_output < data/train.txt > result.txt` |
| | | You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509 |
| | | |
| | | ##### For using network video-camera mjpeg-stream with any Android smartphone: |
| | | |
| | |
| | | * for training for small objects - set `layers = -1, 11` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L720 |
| | | and set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L717 |
| | | |
| | | * General rule - you should keep relative size of objects in the Training and Testing datasets roughly the same: |
| | | * General rule - your training dataset should include such a set of relative sizes of objects that you want to detect - differing by no more than 2 times: |
| | | |
| | | * `train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width` |
| | | * `train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height` |
| | |
| | | printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n"); |
| | | getchar(); |
| | | } |
| | | else if ((net.batch * net.subdivisions) < 64) { |
| | | printf("\n Warning: You set batch= lower than 64! It is recommended to set batch=64 subdivision=64 \n"); |
| | | } |
| | | |
| | | int imgs = net.batch * net.subdivisions * ngpus; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | |
| | | } |
| | | |
| | | void replace_image_to_label(char *input_path, char *output_path) { |
| | | //find_replace(input_path, "images", "labels", output_path); // COCO |
| | | find_replace(input_path, "images/train2014/", "labels/train2014/", output_path); // COCO |
| | | find_replace(output_path, "images/val2014/", "labels/val2014/", output_path); // COCO |
| | | //find_replace(output_path, "JPEGImages", "labels", output_path); // PascalVOC |
| | | find_replace(output_path, "VOC2007/JPEGImages", "VOC2007/labels", output_path); // PascalVOC |
| | | find_replace(output_path, "VOC2012/JPEGImages", "VOC2012/labels", output_path); // PascalVOC |
| | | //find_replace(input_path, "/images/", "/labels/", output_path); // COCO |
| | | find_replace(input_path, "/images/train2014/", "/labels/train2014/", output_path); // COCO |
| | | find_replace(output_path, "/images/val2014/", "/labels/val2014/", output_path); // COCO |
| | | //find_replace(output_path, "/JPEGImages/", "/labels/", output_path); // PascalVOC |
| | | find_replace(output_path, "/VOC2007/JPEGImages/", "/VOC2007/labels/", output_path); // PascalVOC |
| | | find_replace(output_path, "/VOC2012/JPEGImages/", "/VOC2012/labels/", output_path); // PascalVOC |
| | | |
| | | //find_replace(output_path, "/raw/", "/labels/", output_path); |
| | | |