Added batch to col2im, padding option
17 files modified
2 files added
1 files renamed
| | |
| | | LDFLAGS+=`pkg-config --libs opencv` -lm |
| | | VPATH=./src/ |
| | | EXEC=cnn |
| | | OBJDIR=./obj/ |
| | | |
| | | OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o |
| | | OBJ=network.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o |
| | | OBJS = $(addprefix $(OBJDIR), $(OBJ)) |
| | | |
| | | all: $(EXEC) |
| | | |
| | | $(EXEC): $(OBJ) |
| | | $(EXEC): $(OBJS) |
| | | $(CC) $(CFLAGS) $(LDFLAGS) $^ -o $@ |
| | | |
| | | %.o: %.c |
| | | $(OBJDIR)%.o: %.c |
| | | $(CC) $(CFLAGS) -c $< -o $@ |
| | | |
| | | .PHONY: clean |
| | | |
| | | clean: |
| | | rm -rf $(OBJ) $(EXEC) |
| | | rm -rf $(OBJS) $(EXEC) |
| | | |
| | |
| | | SIGMOID, RELU, LINEAR, RAMP, TANH |
| | | }ACTIVATION; |
| | | |
| | | float linear_activate(float x){return x;} |
| | | float sigmoid_activate(float x){return 1./(1. + exp(-x));} |
| | | float relu_activate(float x){return x*(x>0);} |
| | | float ramp_activate(float x){return x*(x>0)+.1*x;} |
| | | float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);} |
| | | |
| | | float activate(float x, ACTIVATION a, float dropout) |
| | | { |
| | | //if((float)rand()/RAND_MAX < dropout) return 0; |
| File was renamed from src/tests.c |
| | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, 1, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | im2col_cpu(dog.data, 1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | |
| | | int size = 3; |
| | | float eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU); |
| | | convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
| | | |
| | |
| | | void test_nist() |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | float lr = .00005; |
| | | float lr = .000075; |
| | | float momentum = .9; |
| | | float decay = 0.0001; |
| | | decay = 0; |
| | | //clock_t start = clock(), end; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | float loss = train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | int iters = 100; |
| | | while(++count <= 10){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters, lr, momentum, decay); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%3d %5f %5f\n",count, loss, test_acc); |
| | | printf("%d: %f %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | |
| | | //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay); |
| | | //end = clock(); |
| | | //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | //start=end; |
| | | //lr *= .5; |
| | | } |
| | | //save_network(net, "cfg/nist_basic_trained.cfg"); |
| | | } |
| | | |
| | | void test_ensemble() |
| | |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, 1, c, h, w, size, stride, matrix); |
| | | im2col_cpu(test.data, 1, c, h, w, size, stride, 0, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | |
| | | save_network(net, "cfg/voc_imagenet_rev.cfg"); |
| | | } |
| | | |
| | | void train_VOC() |
| | | void tune_VOC() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_start.cfg"); |
| | | srand(2222222); |
| | | int i = 20; |
| | | char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
| | | float lr = .00001; |
| | | float lr = .000005; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | float decay = 0.0001; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400); |
| | | data train = load_data_image_pathfile_random("/home/pjreddie/VOC2012/trainval_paths.txt", 10, labels, 20, 256, 256); |
| | | |
| | | image im = float_to_image(300, 400, 3,train.X.vals[0]); |
| | | image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | |
| | | normalize_data_rows(train); |
| | | translate_data_rows(train, -144); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | float loss = train_network_sgd(net, train, 10, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | /* |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/voc_cfg/voc_ramp_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | */ |
| | | //lr *= .99; |
| | | } |
| | | } |
| | |
| | | //test_cifar10(); |
| | | //test_vince(); |
| | | //test_full(); |
| | | //train_VOC(); |
| | | //tune_VOC(); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 0); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 1); |
| | | //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | |
| | | inline void col2im_set_pixel(float *im, int height, int width, int channels, |
| | | int row, int col, int channel, int pad, float val) |
| | | { |
| | | row -= pad; |
| | | col -= pad; |
| | | |
| | | if (row < 0 || col < 0 || |
| | | row >= height || col >= width) return; |
| | | im[col + width*(row + channel*height)] = val; |
| | | } |
| | | //This one might be too, can't remember. |
| | | void col2im_cpu(float* data_col, |
| | | const int batch, const int channels, const int height, const int width, |
| | | const int ksize, const int stride, int pad, float* data_im) |
| | | { |
| | | int c,h,w,b; |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | if (pad){ |
| | | height_col = 1 + (height-1) / stride; |
| | | width_col = 1 + (width-1) / stride; |
| | | pad = ksize/2; |
| | | } |
| | | int channels_col = channels * ksize * ksize; |
| | | int im_size = height*width*channels; |
| | | int col_size = height_col*width_col*channels_col; |
| | | for (b = 0; b < batch; ++b) { |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = 0; h < height_col; ++h) { |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h * stride; |
| | | int im_col = w_offset + w * stride; |
| | | double val = data_col[(c * height_col + h) * width_col + w]; |
| | | col2im_set_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad, val); |
| | | } |
| | | } |
| | | } |
| | | data_im += im_size; |
| | | data_col+= col_size; |
| | | } |
| | | } |
| | | |
| | | |
| | |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input, int train) |
| | | { |
| | | int i; |
| | | if(!train) layer.dropout = 0; |
| | | memcpy(layer.output, layer.biases, layer.outputs*sizeof(float)); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float)); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | gemm(1,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | |
| | | m = layer.inputs; |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.batch; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.weights; |
| | | b = layer.delta; |
| | | a = layer.delta; |
| | | b = layer.weights; |
| | | c = delta; |
| | | |
| | | if(c) gemm(0,0,m,n,k,1,a,k,b,n,0,c,n); |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | |
| | |
| | | |
| | | int convolutional_out_height(convolutional_layer layer) |
| | | { |
| | | return (layer.h-layer.size)/layer.stride + 1; |
| | | int h = layer.h; |
| | | if (!layer.pad) h -= layer.size; |
| | | else h -= 1; |
| | | return h/layer.stride + 1; |
| | | } |
| | | |
| | | int convolutional_out_width(convolutional_layer layer) |
| | | { |
| | | return (layer.w-layer.size)/layer.stride + 1; |
| | | int w = layer.w; |
| | | if (!layer.pad) w -= layer.size; |
| | | else w -= 1; |
| | | return w/layer.stride + 1; |
| | | } |
| | | |
| | | image get_convolutional_image(convolutional_layer layer) |
| | |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... |
| | |
| | | layer->batch = batch; |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | layer->pad = pad; |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | |
| | | layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->filters_cl = cl_make_array(layer->filters, c*n*size*size); |
| | | layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size); |
| | | layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size); |
| | | |
| | | layer->biases_cl = cl_make_array(layer->biases, n); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, n); |
| | | layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n); |
| | | |
| | | layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c); |
| | | layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n); |
| | | layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n); |
| | | #endif |
| | | layer->activation = activation; |
| | | |
| | |
| | | |
| | | void bias_output(const convolutional_layer layer) |
| | | { |
| | | int i,j; |
| | | int i,j,b; |
| | | int out_h = convolutional_out_height(layer); |
| | | int out_w = convolutional_out_width(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | for(j = 0; j < out_h*out_w; ++j){ |
| | | layer.output[i*out_h*out_w + j] = layer.biases[i]; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | for(j = 0; j < out_h*out_w; ++j){ |
| | | layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | im2col_cpu(in,layer.batch, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, b); |
| | | layer.size, layer.stride, layer.pad, b); |
| | | bias_output(layer); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array(layer.output, m*n, layer.activation, 0.); |
| | |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |
| | | if(delta){ |
| | | int i; |
| | | m = layer.size*layer.size*layer.c; |
| | | k = layer.n; |
| | | n = convolutional_out_height(layer)* |
| | |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | |
| | | memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | col2im_cpu(c+i*n/layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, delta+i*n/layer.batch); |
| | | } |
| | | col2im_cpu(c, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta); |
| | | } |
| | | } |
| | | |
| | |
| | | int n; |
| | | int size; |
| | | int stride; |
| | | int pad; |
| | | float *filters; |
| | | float *filter_updates; |
| | | float *filter_momentum; |
| | |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in); |
| | | #endif |
| | | |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation); |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation); |
| | | void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c); |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in); |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay); |
| | |
| | | } |
| | | } |
| | | |
| | | void translate_data_rows(data d, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | translate_array(d.X.vals[i], d.X.cols, s); |
| | | } |
| | | } |
| | | |
| | | void normalize_data_rows(data d) |
| | | { |
| | | int i; |
| | |
| | | data load_categorical_data_csv(char *filename, int target, int k); |
| | | void normalize_data_rows(data d); |
| | | void scale_data_rows(data d, float s); |
| | | void translate_data_rows(data d, float s); |
| | | void randomize_data(data d); |
| | | data *split_data(data d, int part, int total); |
| | | |
| New file |
| | |
| | | int detection_out_height(detection_layer layer) |
| | | { |
| | | return layer.size + layer.h*layer.stride; |
| | | } |
| | | |
| | | int detection_out_width(detection_layer layer) |
| | | { |
| | | return layer.size + layer.w*layer.stride; |
| | | } |
| | | |
| | | detection_layer *make_detection_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... |
| | | detection_layer *layer = calloc(1, sizeof(detection_layer)); |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->batch = batch; |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | assert(c%n == 0); |
| | | |
| | | layer->filters = calloc(c*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*size*size, sizeof(float)); |
| | | layer->filter_momentum = calloc(c*size*size, sizeof(float)); |
| | | |
| | | float scale = 1./(size*size*c); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()); |
| | | |
| | | int out_h = detection_out_height(*layer); |
| | | int out_w = detection_out_width(*layer); |
| | | |
| | | layer->output = calloc(layer->batch * out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch * out_h * out_w * n, sizeof(float)); |
| | | |
| | | layer->activation = activation; |
| | | |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | srand(0); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, float *in) |
| | | { |
| | | int out_h = detection_out_height(layer); |
| | | int out_w = detection_out_width(layer); |
| | | int i,j,fh, fw,c; |
| | | memset(layer.output, 0, layer->batch*layer->n*out_h*out_w*sizeof(float)); |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = 0; i < layer.h; ++i){ |
| | | for(j = 0; j < layer.w; ++j){ |
| | | float val = layer->input[j+(i + c*layer.h)*layer.w]; |
| | | for(fh = 0; fh < layer.size; ++fh){ |
| | | for(fw = 0; fw < layer.size; ++fw){ |
| | | int h = i*layer.stride + fh; |
| | | int w = j*layer.stride + fw; |
| | | layer.output[w+(h+c/n*out_h)*out_w] += val*layer->filters[fw+(fh+c*layer.size)*layer.size]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, float *delta) |
| | | { |
| | | } |
| | | |
| | | |
| New file |
| | |
| | | #ifndef DETECTION_LAYER_H |
| | | #define DETECTION_LAYER_H |
| | | |
| | | typedef struct { |
| | | int batch; |
| | | int h,w,c; |
| | | int n; |
| | | int size; |
| | | int stride; |
| | | |
| | | float *filters; |
| | | float *filter_updates; |
| | | float *filter_momentum; |
| | | |
| | | float *biases; |
| | | float *bias_updates; |
| | | float *bias_momentum; |
| | | |
| | | float *col_image; |
| | | float *delta; |
| | | float *output; |
| | | |
| | | #ifdef GPU |
| | | cl_mem filters_cl; |
| | | cl_mem filter_updates_cl; |
| | | cl_mem filter_momentum_cl; |
| | | |
| | | cl_mem biases_cl; |
| | | cl_mem bias_updates_cl; |
| | | cl_mem bias_momentum_cl; |
| | | |
| | | cl_mem col_image_cl; |
| | | cl_mem delta_cl; |
| | | cl_mem output_cl; |
| | | #endif |
| | | |
| | | ACTIVATION activation; |
| | | } convolutional_layer; |
| | | |
| | | #endif |
| | |
| | | int brow = i + sub_row; |
| | | int bcol = col_block*BLOCK + sub_col; |
| | | |
| | | Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol]; |
| | | Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol]; |
| | | if(arow < M && acol < K)Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol]; |
| | | if(brow < K && bcol < N)Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol]; |
| | | |
| | | barrier(CLK_LOCAL_MEM_FENCE); |
| | | |
| | |
| | | #include "mini_blas.h" |
| | | |
| | | inline float im2col_get_pixel(float *im, int height, int width, int channels, |
| | | int row, int col, int channel, int pad) |
| | | { |
| | | row -= pad; |
| | | col -= pad; |
| | | |
| | | if (row < 0 || col < 0 || |
| | | row >= height || col >= width) return 0; |
| | | return im[col + width*(row + channel*height)]; |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu(float* data_im, |
| | | const int batch, const int channels, const int height, const int width, |
| | | const int ksize, const int stride, float* data_col) |
| | | const int ksize, const int stride, int pad, float* data_col) |
| | | { |
| | | int c,h,w,b; |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | if (pad){ |
| | | height_col = 1 + (height-1) / stride; |
| | | width_col = 1 + (width-1) / stride; |
| | | pad = ksize/2; |
| | | } |
| | | int channels_col = channels * ksize * ksize; |
| | | int im_size = height*width*channels; |
| | | int col_size = height_col*width_col*channels_col; |
| | | for(b = 0; b < batch; ++b){ |
| | | for ( c = 0; c < channels_col; ++c) { |
| | | for (b = 0; b < batch; ++b) { |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for ( h = 0; h < height_col; ++h) { |
| | | for ( w = 0; w < width_col; ++w) { |
| | | for (h = 0; h < height_col; ++h) { |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h * stride; |
| | | int im_col = w_offset + w * stride; |
| | | data_col[(c * height_col + h) * width_col + w] = |
| | | data_im[(c_im * height + h * stride + h_offset) * width |
| | | + w * stride + w_offset]; |
| | | im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | |
| | | |
| | | maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride) |
| | | { |
| | | c = c*batch; |
| | | fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d stride\n", h,w,c,stride); |
| | | maxpool_layer *layer = calloc(1, sizeof(maxpool_layer)); |
| | | layer->batch = batch; |
| | |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->stride = stride; |
| | | layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(float)); |
| | | layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(float)); |
| | | layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float)); |
| | | layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float)); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float)); |
| | | layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float)); |
| | | layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch* sizeof(float)); |
| | | layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch*sizeof(float)); |
| | | } |
| | | |
| | | void forward_maxpool_layer(const maxpool_layer layer, float *in) |
| | | { |
| | | image input = float_to_image(layer.h, layer.w, layer.c, in); |
| | | image output = get_maxpool_image(layer); |
| | | int i,j,k; |
| | | for(i = 0; i < output.h*output.w*output.c; ++i) output.data[i] = -DBL_MAX; |
| | | for(k = 0; k < input.c; ++k){ |
| | | for(i = 0; i < input.h; ++i){ |
| | | for(j = 0; j < input.w; ++j){ |
| | | float val = get_pixel(input, i, j, k); |
| | | float cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | if(val > cur) set_pixel(output, i/layer.stride, j/layer.stride, k, val); |
| | | int b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | image input = float_to_image(layer.h, layer.w, layer.c, in+b*layer.h*layer.w*layer.c); |
| | | |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | | int w = (layer.w-1)/layer.stride + 1; |
| | | int c = layer.c; |
| | | image output = float_to_image(h,w,c,layer.output+b*h*w*c); |
| | | |
| | | int i,j,k; |
| | | for(i = 0; i < output.h*output.w*output.c; ++i) output.data[i] = -DBL_MAX; |
| | | for(k = 0; k < input.c; ++k){ |
| | | for(i = 0; i < input.h; ++i){ |
| | | for(j = 0; j < input.w; ++j){ |
| | | float val = get_pixel(input, i, j, k); |
| | | float cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | if(val > cur) set_pixel(output, i/layer.stride, j/layer.stride, k, val); |
| | | } |
| | | } |
| | | } |
| | | } |
| | |
| | | |
| | | void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta) |
| | | { |
| | | image input = float_to_image(layer.h, layer.w, layer.c, in); |
| | | image input_delta = float_to_image(layer.h, layer.w, layer.c, delta); |
| | | image output_delta = get_maxpool_delta(layer); |
| | | image output = get_maxpool_image(layer); |
| | | int i,j,k; |
| | | for(k = 0; k < input.c; ++k){ |
| | | for(i = 0; i < input.h; ++i){ |
| | | for(j = 0; j < input.w; ++j){ |
| | | float val = get_pixel(input, i, j, k); |
| | | float cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | float d = get_pixel(output_delta, i/layer.stride, j/layer.stride, k); |
| | | if(val == cur) { |
| | | set_pixel(input_delta, i, j, k, d); |
| | | int b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | image input = float_to_image(layer.h, layer.w, layer.c, in+b*layer.h*layer.w*layer.c); |
| | | image input_delta = float_to_image(layer.h, layer.w, layer.c, delta+b*layer.h*layer.w*layer.c); |
| | | int h = (layer.h-1)/layer.stride + 1; |
| | | int w = (layer.w-1)/layer.stride + 1; |
| | | int c = layer.c; |
| | | image output = float_to_image(h,w,c,layer.output+b*h*w*c); |
| | | image output_delta = float_to_image(h,w,c,layer.delta+b*h*w*c); |
| | | |
| | | int i,j,k; |
| | | for(k = 0; k < input.c; ++k){ |
| | | for(i = 0; i < input.h; ++i){ |
| | | for(j = 0; j < input.w; ++j){ |
| | | float val = get_pixel(input, i, j, k); |
| | | float cur = get_pixel(output, i/layer.stride, j/layer.stride, k); |
| | | float d = get_pixel(output_delta, i/layer.stride, j/layer.stride, k); |
| | | if(val == cur) { |
| | | set_pixel(input_delta, i, j, k, d); |
| | | } |
| | | else set_pixel(input_delta, i, j, k, 0); |
| | | } |
| | | else set_pixel(input_delta, i, j, k, 0); |
| | | } |
| | | } |
| | | } |
| | |
| | | printf("\n"); |
| | | } |
| | | |
| | | //This one might be too, can't remember. |
| | | void col2im_cpu(float* data_col, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | float* data_im) |
| | | { |
| | | int c,h,w; |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | for ( c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for ( h = 0; h < height_col; ++h) { |
| | | for ( w = 0; w < width_col; ++w) { |
| | | data_im[(c_im * height + h * stride + h_offset) * width |
| | | + w * stride + w_offset]+= data_col[(c * height_col + h) * width_col + w]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | |
| | | |
| | | void im2col_cpu(float* data_im, |
| | | const int batch, const int channels, const int height, const int width, |
| | | const int ksize, const int stride, float* data_col); |
| | | const int ksize, const int stride, int pad, float* data_col); |
| | | |
| | | void col2im_cpu(float* data_col, const int channels, |
| | | const int height, const int width, const int ksize, const int stride, |
| | | float* data_im); |
| | | void col2im_cpu(float* data_col, |
| | | const int batch, const int channels, const int height, const int width, |
| | | const int ksize, const int stride, int pad, float* data_im); |
| | | void test_blas(); |
| | | |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_network(network net, float *input, int train) |
| | | { |
| | | int i; |
| | | #ifdef GPU |
| | | cl_setup(); |
| | | size_t size = get_network_input_size(net); |
| | | if(!net.input_cl){ |
| | |
| | | } |
| | | cl_write_array(net.input_cl, input, size); |
| | | cl_mem input_cl = net.input_cl; |
| | | #endif |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | #ifdef GPU |
| | | forward_convolutional_layer_gpu(layer, input_cl); |
| | | input_cl = layer.output_cl; |
| | | #else |
| | | forward_convolutional_layer(layer, input); |
| | | #endif |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | |
| | | } |
| | | } |
| | | |
| | | #else |
| | | |
| | | void forward_network(network net, float *input, int train) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input, train); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | void update_network(network net, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i, k = get_network_output_size(net); |
| | | for(i = 0; i < k; ++i){ |
| | | //printf("%f, ", out[i]); |
| | | int i; |
| | | for(i = 0; i < get_network_output_size(net)*net.batch; ++i){ |
| | | //if(i %get_network_output_size(net) == 0) printf("\n"); |
| | | //printf("%5.2f %5.2f, ", out[i], truth[i]); |
| | | delta[i] = truth[i] - out[i]; |
| | | sum += delta[i]*delta[i]; |
| | | } |
| | |
| | | |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | float error = 0; |
| | | int correct = 0; |
| | | int pos = 0; |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i,j; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
| | | memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
| | | } |
| | | float err = train_network_datum(net, X, y, step, momentum, decay); |
| | | sum += err; |
| | | //train_network_datum(net, X, y, step, momentum, decay); |
| | | /* |
| | | float *y = d.y.vals[index]; |
| | | int class = get_predicted_class_network(net); |
| | | correct += (y[class]?1:0); |
| | | if(y[1]){ |
| | | error += err; |
| | | ++pos; |
| | | */ |
| | | |
| | | /* |
| | | for(j = 0; j < d.y.cols*batch; ++j){ |
| | | printf("%6.3f ", y[j]); |
| | | } |
| | | printf("\n"); |
| | | for(j = 0; j < d.y.cols*batch; ++j){ |
| | | printf("%6.3f ", get_network_output(net)[j]); |
| | | } |
| | | printf("\n"); |
| | | printf("\n"); |
| | | */ |
| | | |
| | | |
| | | //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); |
| | |
| | | //} |
| | | } |
| | | //printf("Accuracy: %f\n",(float) correct/n); |
| | | return error/pos; |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return get_network_output_size_layer(net, 0); |
| | | return get_network_input_size_layer(net, 0); |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | { |
| | | int i,j; |
| | | int i,j,b; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | for(i = 0; i < test.X.rows; ++i){ |
| | | float *out = network_predict(net, test.X.vals[i]); |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i][j] = out[j]; |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] = out[j+b*k]; |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | |
| | | if(num_devices > MAX_DEVICES) num_devices = MAX_DEVICES; |
| | | int index = getpid()%num_devices; |
| | | printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index); |
| | | info.device = devices[index]; |
| | | //info.device = devices[index]; |
| | | info.device = devices[1]; |
| | | fprintf(stderr, "Found %d device(s)\n", num_devices); |
| | | check_error(info); |
| | | |
| | |
| | | check_error(cl); |
| | | } |
| | | |
| | | void cl_copy_array(cl_mem src, cl_mem dst, int n) |
| | | { |
| | | cl_setup(); |
| | | clEnqueueCopyBuffer(cl.queue, src, dst, 0, 0, sizeof(float)*n,0,0,0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | cl_mem cl_make_array(float *x, int n) |
| | | { |
| | | cl_setup(); |
| | | cl_mem mem = clCreateBuffer(cl.context, |
| | | CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, |
| | | sizeof(float)*n, x, &cl.error); |
| | | check_error(cl); |
| | | return mem; |
| | | } |
| | | |
| | | #endif |
| | |
| | | cl_kernel get_kernel(char *filename, char *kernelname, char *options); |
| | | void cl_read_array(cl_mem mem, float *x, int n); |
| | | void cl_write_array(cl_mem mem, float *x, int n); |
| | | cl_mem cl_make_array(float *x, int n); |
| | | void cl_copy_array(cl_mem src, cl_mem dst, int n); |
| | | #endif |
| | | #endif |
| | |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation); |
| | | convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride,pad,activation); |
| | | char *data = option_find_str(options, "data", 0); |
| | | if(data){ |
| | | char *curr = data; |