Better imagenet distributed training
| | |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "matrix.h" |
| | | #include "server.h" |
| | | |
| | | #include <time.h> |
| | |
| | | } |
| | | } |
| | | |
| | | void train_detection_net() |
| | | void draw_detection(image im, float *box, int side) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | //srand(time(0)); |
| | | srand(23410); |
| | | int i = 0; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_random(imgs*net.batch, paths, plist->size, 256, 256, 8, 8, 256); |
| | | //translate_data_rows(train, -144); |
| | | /* |
| | | image im = float_to_image(256, 256, 3, train.X.vals[0]); |
| | | float *truth = train.y.vals[0]; |
| | | int j; |
| | | int r, c; |
| | | for(r = 0; r < 8; ++r){ |
| | | for(c = 0; c < 8; ++c){ |
| | | j = (r*8 + c) * 5; |
| | | if(truth[j]){ |
| | | int d = 256/8; |
| | | int y = r*d+truth[j+1]*d; |
| | | int x = c*d+truth[j+2]*d; |
| | | int h = truth[j+3]*256; |
| | | int w = truth[j+4]*256; |
| | | printf("%f %f %f %f\n", truth[j+1], truth[j+2], truth[j+3], truth[j+4]); |
| | | float amount[5]; |
| | | for(r = 0; r < side*side; ++r){ |
| | | for(j = 0; j < 5; ++j){ |
| | | if(box[r*5] > amount[j]) { |
| | | amount[j] = box[r*5]; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | float smallest = amount[0]; |
| | | for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j]; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] >= smallest){ |
| | | int d = im.w/side; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | |
| | | } |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | |
| | | void train_detection_net() |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | //srand(23410); |
| | | int i = 0; |
| | | list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_detection_jitter_random(imgs*net.batch, paths, plist->size, 256, 256, 7, 7, 256); |
| | | /* |
| | | image im = float_to_image(224, 224, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | */ |
| | | |
| | | normalize_data_rows(train); |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | } |
| | | |
| | |
| | | { |
| | | float avg_loss = 1; |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_learning_network(&net, 0, 1, 0); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | int imgs = 1; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | client_update(net, address); |
| | | printf("Updated: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | client_update(net, address); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/alexnet.cfg"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | //imgs=1; |
| | |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | |
| | | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_top5 = 0; |
| | | int splits = 50; |
| | | |
| | | for(i = 0; i < splits; ++i){ |
| | | time=clock(); |
| | | char **part = paths+(i*m/splits); |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | data val = load_data(part, num, labels, 1000, 256, 256); |
| | | data val = load_data(part, num, labels, 1000, 224, 224); |
| | | |
| | | normalize_data_rows(val); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float acc = network_accuracy_gpu(net, val); |
| | | avg_acc += acc; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows); |
| | | float *acc = network_accuracies_gpu(net, val); |
| | | avg_acc += acc[0]; |
| | | avg_top5 += acc[1]; |
| | | printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/(i+1), avg_top5/(i+1), sec(clock()-time), val.X.rows); |
| | | #endif |
| | | free_data(val); |
| | | } |
| | | } |
| | | |
| | | void draw_detection(image im, float *box) |
| | | { |
| | | int j; |
| | | int r, c; |
| | | for(r = 0; r < 8; ++r){ |
| | | for(c = 0; c < 8; ++c){ |
| | | j = (r*8 + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] > .01){ |
| | | int d = 256/8; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | | int h = box[j+3]*256; |
| | | int w = box[j+4]*256; |
| | | printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
| | | printf("%d %d %d %d\n", x, y, w, h); |
| | | printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_detection() |
| | | { |
| | | network net = parse_network_cfg("cfg/detnet.test"); |
| | |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions); |
| | | draw_detection(im, predictions, 7); |
| | | free_image(im); |
| | | } |
| | | } |
| | | |
| | | void test_init(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *filename = "data/test.jpg"; |
| | | |
| | | image im = load_image_color(filename, 224, 224); |
| | | z_normalize_image(im); |
| | | float *X = im.data; |
| | | forward_network(net, X, 0, 1); |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | int size = output.h*output.w*output.c; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | int size = layer.outputs; |
| | | float v = variance_array(layer.output, size); |
| | | float m = mean_array(layer.output, size); |
| | | printf("%d: Connected, mean: %f, variance %f\n", i, m, v); |
| | | } |
| | | } |
| | | free_image(im); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | |
| | | |
| | | } |
| | | |
| | | void test_nist() |
| | | void test_nist(char *path) |
| | | { |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/nist_final.cfg"); |
| | | network net = parse_network_cfg(path); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(test, -144); |
| | | normalize_data_rows(test); |
| | | clock_t start = clock(), end; |
| | | float test_acc = network_accuracy_multi(net, test,16); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | end = clock(); |
| | | printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | int iters = 60000/net.batch + 1; |
| | | //iters = 6000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | float test_acc = 0; |
| | | if(count%1 == 0) test_acc = network_accuracy_gpu(net, test); |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | float acc = matrix_topk_accuracy(test.y, partial,1); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | float acc = matrix_topk_accuracy(test.y, prediction,1); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.server"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | void test_client() |
| | |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "client")) train_nist_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |
| | |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | scale = .01; |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = .01; |
| | | layer->biases[i] = scale; |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | scale = .01; |
| | | float scale = 1./sqrt(size*size*c); |
| | | //scale = .05; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = .01; |
| | | layer->biases[i] = scale; |
| | | } |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | |
| | | return lines; |
| | | } |
| | | |
| | | void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale) |
| | | void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale, int dx, int dy) |
| | | { |
| | | int box_height = height/num_height; |
| | | int box_width = width/num_width; |
| | |
| | | if(!file) file_error(labelpath); |
| | | int x, y, h, w; |
| | | while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){ |
| | | x -= dx; |
| | | y -= dy; |
| | | int i = x/box_width; |
| | | int j = y/box_height; |
| | | |
| | | if(i < 0) i = 0; |
| | | if(i >= num_width) i = num_width-1; |
| | | if(j < 0) j = 0; |
| | | if(j >= num_height) j = num_height-1; |
| | | |
| | | float dw = (float)(x%box_width)/box_height; |
| | | float dh = (float)(y%box_width)/box_width; |
| | | float sh = h/scale; |
| | |
| | | matrix y = make_matrix(n, k); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale); |
| | | fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale,0,0); |
| | | } |
| | | return y; |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(random_paths, n, h, w); |
| | | int k = nh*nw*5; |
| | | d.y = make_matrix(n, k); |
| | | for(i = 0; i < n; ++i){ |
| | | int dx = rand()%32; |
| | | int dy = rand()%32; |
| | | fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy); |
| | | |
| | | image a = float_to_image(h, w, 3, d.X.vals[i]); |
| | | jitter_image(a,224,224,dy,dx); |
| | | } |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | | |
| | | |
| | | data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | |
| | | return d; |
| | | } |
| | | |
| | | struct load_args{ |
| | | int n; |
| | | char **paths; |
| | | int m; |
| | | char **labels; |
| | | int k; |
| | | int h; |
| | | int w; |
| | | data *d; |
| | | }; |
| | | |
| | | void *load_in_thread(void *ptr) |
| | | { |
| | | struct load_args a = *(struct load_args*)ptr; |
| | | *a.d = load_data_random(a.n, a.paths, a.m, a.labels, a.k, a.h, a.w); |
| | | return 0; |
| | | } |
| | | |
| | | pthread_t load_data_random_thread(int n, char **paths, int m, char **labels, int k, int h, int w, data *d) |
| | | { |
| | | pthread_t thread; |
| | | struct load_args *args = calloc(1, sizeof(struct load_args)); |
| | | args->n = n; |
| | | args->paths = paths; |
| | | args->m = m; |
| | | args->labels = labels; |
| | | args->k = k; |
| | | args->h = h; |
| | | args->w = w; |
| | | args->d = d; |
| | | if(pthread_create(&thread, 0, load_in_thread, args)) { |
| | | error("Thread creation failed"); |
| | | } |
| | | return thread; |
| | | } |
| | | |
| | | data load_categorical_data_csv(char *filename, int target, int k) |
| | | { |
| | | data d; |
| | |
| | | #ifndef DATA_H |
| | | #define DATA_H |
| | | #include <pthread.h> |
| | | |
| | | #include "matrix.h" |
| | | #include "list.h" |
| | |
| | | |
| | | void free_data(data d); |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w); |
| | | pthread_t load_data_random_thread(int n, char **paths, int m, char **labels, int k, int h, int w, data *d); |
| | | data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w); |
| | | data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale); |
| | | data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale); |
| | | data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w); |
| | | data load_cifar10_data(char *filename); |
| | | data load_all_cifar10(); |
| | |
| | | void draw_box(image a, int x1, int y1, int x2, int y2) |
| | | { |
| | | int i, c; |
| | | if(x1 < 0) x1 = 0; |
| | | if(x1 >= a.w) x1 = a.w-1; |
| | | if(x2 < 0) x2 = 0; |
| | | if(x2 >= a.w) x2 = a.w-1; |
| | | |
| | | if(y1 < 0) y1 = 0; |
| | | if(y1 >= a.h) y1 = a.h-1; |
| | | if(y2 < 0) y2 = 0; |
| | | if(y2 >= a.h) y2 = a.h-1; |
| | | |
| | | for(c = 0; c < a.c; ++c){ |
| | | for(i = x1; i < x2; ++i){ |
| | | a.data[i + y1*a.w + c*a.w*a.h] = (c==0)?1:-1; |
| | |
| | | } |
| | | } |
| | | |
| | | void jitter_image(image a, int h, int w, int dh, int dw) |
| | | { |
| | | int i,j,k; |
| | | for(k = 0; k < a.c; ++k){ |
| | | for(i = 0; i < h; ++i){ |
| | | for(j = 0; j < w; ++j){ |
| | | int src = j + dw + (i+dh)*a.w + k*a.w*a.h; |
| | | int dst = j + i*w + k*w*h; |
| | | a.data[dst] = a.data[src]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | image image_distance(image a, image b) |
| | | { |
| | | int i,j; |
| | |
| | | float *data; |
| | | } image; |
| | | |
| | | void jitter_image(image a, int h, int w, int dh, int dw); |
| | | void draw_box(image a, int x1, int y1, int x2, int y2); |
| | | image image_distance(image a, image b); |
| | | void scale_image(image m, float s); |
| | |
| | | free(m.vals); |
| | | } |
| | | |
| | | float matrix_accuracy(matrix truth, matrix guess) |
| | | float matrix_topk_accuracy(matrix truth, matrix guess, int k) |
| | | { |
| | | int k = truth.cols; |
| | | int i; |
| | | int count = 0; |
| | | int *indexes = calloc(k, sizeof(int)); |
| | | int n = truth.cols; |
| | | int i,j; |
| | | int correct = 0; |
| | | for(i = 0; i < truth.rows; ++i){ |
| | | int class = max_index(guess.vals[i], k); |
| | | if(truth.vals[i][class]) ++count; |
| | | top_k(guess.vals[i], n, k, indexes); |
| | | for(j = 0; j < k; ++j){ |
| | | int class = indexes[j]; |
| | | if(truth.vals[i][class]){ |
| | | ++correct; |
| | | break; |
| | | } |
| | | return (float)count/truth.rows; |
| | | } |
| | | } |
| | | free(indexes); |
| | | return (float)correct/truth.rows; |
| | | } |
| | | |
| | | void matrix_add_matrix(matrix from, matrix to) |
| | |
| | | |
| | | matrix csv_to_matrix(char *filename); |
| | | matrix hold_out_matrix(matrix *m, int n); |
| | | float matrix_accuracy(matrix truth, matrix guess); |
| | | float matrix_topk_accuracy(matrix truth, matrix guess, int k); |
| | | void matrix_add_matrix(matrix from, matrix to); |
| | | |
| | | float *pop_column(matrix *m, int c); |
| | |
| | | fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | void set_learning_network(network *net, float rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | net->learning_rate=rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->learning_rate=rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->learning_rate=rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void set_batch_network(network *net, int b) |
| | | { |
| | | net->batch = b; |
| | | int i; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } else if(net->types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == FREEWEIGHT){ |
| | | freeweight_layer *layer = (freeweight_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == SOFTMAX){ |
| | | softmax_layer *layer = (softmax_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == COST){ |
| | | cost_layer *layer = (cost_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies(network net, data d) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess,1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess,5); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | |
| | | #endif |
| | | } network; |
| | | |
| | | #ifdef GPU |
| | | #ifndef GPU |
| | | typedef int cl_mem; |
| | | #endif |
| | | |
| | | cl_mem get_network_output_cl_layer(network net, int i); |
| | | cl_mem get_network_delta_cl_layer(network net, int i); |
| | | void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train); |
| | | void backward_network_gpu(network net, cl_mem input); |
| | | void update_network_gpu(network net); |
| | | cl_mem get_network_output_cl_layer(network net, int i); |
| | | cl_mem get_network_delta_cl_layer(network net, int i); |
| | | float train_network_sgd_gpu(network net, data d, int n); |
| | | float train_network_data_gpu(network net, data d, int n); |
| | | float *network_predict_gpu(network net, float *input); |
| | | float network_accuracy_gpu(network net, data d); |
| | | #endif |
| | | float *network_accuracies_gpu(network net, data d); |
| | | |
| | | float *network_accuracies(network net, data d); |
| | | |
| | | network make_network(int n, int batch); |
| | | void forward_network(network net, float *input, float *truth, int train); |
| | |
| | | void print_network(network net); |
| | | void visualize_network(network net); |
| | | int resize_network(network net, int h, int w, int c); |
| | | void set_batch_network(network *net, int b); |
| | | void set_learning_network(network *net, float rate, float momentum, float decay); |
| | | int get_network_input_size(network net); |
| | | float get_network_cost(network net); |
| | | |
| | |
| | | cl_write_array(*net.input_cl, x, x_size); |
| | | cl_write_array(*net.truth_cl, y, y_size); |
| | | } |
| | | //printf("trans %f\n", sec(clock()-time)); |
| | | //time = clock(); |
| | | |
| | | forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); |
| | | |
| | | //printf("forw %f\n", sec(clock()-time)); |
| | | //time = clock(); |
| | | backward_network_gpu(net, *net.input_cl); |
| | | //printf("back %f\n", sec(clock()-time)); |
| | | //time = clock(); |
| | | |
| | | update_network_gpu(net); |
| | | float error = get_network_cost(net); |
| | | |
| | | //printf("updt %f\n", sec(clock()-time)); |
| | | //time = clock(); |
| | | return error; |
| | | } |
| | | |
| | |
| | | float network_accuracy_gpu(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data_gpu(net, d); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies_gpu(network net, data d) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data_gpu(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess,1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess,5); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |
| | | #else |
| | | void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train){} |
| | | void backward_network_gpu(network net, cl_mem input){} |
| | | void update_network_gpu(network net){} |
| | | float train_network_sgd_gpu(network net, data d, int n){return 0;} |
| | | float train_network_data_gpu(network net, data d, int n){return 0;} |
| | | float *network_predict_gpu(network net, float *input){return 0;} |
| | | float network_accuracy_gpu(network net, data d){return 0;} |
| | | |
| | | #endif |
| | |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | |
| | | #define SERVER_PORT 9876 |
| | | #define SERVER_PORT 9423 |
| | | #define STR(x) #x |
| | | |
| | | int socket_setup(int server) |
| | |
| | | |
| | | typedef struct{ |
| | | int fd; |
| | | int *counter; |
| | | int counter; |
| | | network net; |
| | | } connection_info; |
| | | |
| | |
| | | connection_info info = *(connection_info *) pointer; |
| | | free(pointer); |
| | | //printf("New Connection\n"); |
| | | if(info.counter%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/net_%d.part", info.counter); |
| | | save_network(info.net, buff); |
| | | } |
| | | int fd = info.fd; |
| | | network net = info.net; |
| | | int i; |
| | |
| | | while(1){ |
| | | connection_info *info = calloc(1, sizeof(connection_info)); |
| | | info->net = net; |
| | | info->counter = &counter; |
| | | info->counter = counter; |
| | | pthread_t worker; |
| | | int connection = accept(fd, (struct sockaddr *) &client, &client_size); |
| | | if(!t) t=time(0); |
| | |
| | | pthread_create(&worker, NULL, (void *) &handle_connection, info); |
| | | ++counter; |
| | | printf("%d\n", counter); |
| | | if(counter == 1024) break; |
| | | if(counter%1000==0) save_network(net, "cfg/nist.part"); |
| | | //if(counter == 1024) break; |
| | | } |
| | | printf("1024 epochs: %d seconds\n", time(0)-t); |
| | | close(fd); |
| | | } |
| | | |
| | |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | read_all(fd, (char*) layer.filters, num*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | push_convolutional_layer(layer); |
| | | #endif |
| | | } |
| | | if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net.layers[i]; |
| | |
| | | read_all(fd, (char *)layer.biases, layer.outputs*sizeof(float)); |
| | | read_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | push_connected_layer(layer); |
| | | #endif |
| | | } |
| | | } |
| | | //printf("Updated\n"); |
| | |
| | | void top_k(float *a, int n, int k, int *index) |
| | | { |
| | | int i,j; |
| | | float thresh = FLT_MAX; |
| | | for(i = 0; i < k; ++i){ |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for(j = 0; j < n; ++j){ |
| | | float val = a[j]; |
| | | if(val > max && val < thresh){ |
| | | max = val; |
| | | max_i = j; |
| | | for(j = 0; j < k; ++j) index[j] = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int curr = i; |
| | | for(j = 0; j < k; ++j){ |
| | | if(a[curr] > a[index[j]]){ |
| | | int swap = curr; |
| | | curr = index[j]; |
| | | index[j] = swap; |
| | | } |
| | | } |
| | | index[i] = max_i; |
| | | thresh = max; |
| | | } |
| | | } |
| | | |
| | |
| | | return max_i; |
| | | } |
| | | |
| | | // From http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform |
| | | #define TWO_PI 6.2831853071795864769252866 |
| | | float rand_normal() |
| | | { |
| | | static int haveSpare = 0; |
| | | static double rand1, rand2; |
| | | |
| | | if(haveSpare) |
| | | { |
| | | haveSpare = 0; |
| | | return sqrt(rand1) * sin(rand2); |
| | | } |
| | | |
| | | haveSpare = 1; |
| | | |
| | | rand1 = rand() / ((double) RAND_MAX); |
| | | if(rand1 < 1e-100) rand1 = 1e-100; |
| | | rand1 = -2 * log(rand1); |
| | | rand2 = (rand() / ((double) RAND_MAX)) * TWO_PI; |
| | | |
| | | return sqrt(rand1) * cos(rand2); |
| | | } |
| | | |
| | | /* |
| | | float rand_normal() |
| | | { |
| | | int n = 12; |
| | |
| | | for(i = 0; i < n; ++i) sum += (float)rand()/RAND_MAX; |
| | | return sum-n/2.; |
| | | } |
| | | */ |
| | | |
| | | float rand_uniform() |
| | | { |
| | | return (float)rand()/RAND_MAX; |