Joseph Redmon
2016-08-05 845ab7579685b6702c92c1088ec11e71bde51f3c
some more stuff
19 files modified
7 files added
1745 ■■■■■ changed files
Makefile 2 ●●● patch | view | raw | blame | history
cfg/darknet.cfg 20 ●●●● patch | view | raw | blame | history
cfg/extraction.cfg 50 ●●●●● patch | view | raw | blame | history
src/blas.c 21 ●●●●● patch | view | raw | blame | history
src/blas.h 2 ●●●●● patch | view | raw | blame | history
src/blas_kernels.cu 39 ●●●●● patch | view | raw | blame | history
src/classifier.c 55 ●●●● patch | view | raw | blame | history
src/convolutional_layer.c 127 ●●●● patch | view | raw | blame | history
src/darknet.c 27 ●●●●● patch | view | raw | blame | history
src/data.c 52 ●●●●● patch | view | raw | blame | history
src/data.h 5 ●●●● patch | view | raw | blame | history
src/detector.c 398 ●●●●● patch | view | raw | blame | history
src/image.c 57 ●●●●● patch | view | raw | blame | history
src/image.h 8 ●●●●● patch | view | raw | blame | history
src/layer.h 2 ●●●●● patch | view | raw | blame | history
src/network.c 23 ●●●● patch | view | raw | blame | history
src/network.h 2 ●●●●● patch | view | raw | blame | history
src/network_kernels.cu 59 ●●●●● patch | view | raw | blame | history
src/parser.c 55 ●●●●● patch | view | raw | blame | history
src/region_layer.c 286 ●●●●● patch | view | raw | blame | history
src/region_layer.h 18 ●●●●● patch | view | raw | blame | history
src/reorg_layer.c 111 ●●●●● patch | view | raw | blame | history
src/reorg_layer.h 20 ●●●●● patch | view | raw | blame | history
src/super.c 132 ●●●●● patch | view | raw | blame | history
src/utils.c 5 ●●●●● patch | view | raw | blame | history
src/voxel.c 169 ●●●●● patch | view | raw | blame | history
Makefile
@@ -41,7 +41,7 @@
LDFLAGS+= -lcudnn
endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o super.o voxel.o
ifeq ($(GPU), 1) 
LDFLAGS+= -lstdc++ 
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
cfg/darknet.cfg
@@ -11,9 +11,10 @@
learning_rate=0.1
policy=poly
power=4
max_batches=500000
max_batches=1600000
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
@@ -25,6 +26,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
@@ -36,6 +38,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
@@ -47,6 +50,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
@@ -58,6 +62,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
@@ -69,6 +74,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
@@ -80,18 +86,22 @@
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[avgpool]
[connected]
output=1000
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=leaky
[avgpool]
[softmax]
groups=1
cfg/extraction.cfg
@@ -1,26 +1,20 @@
[net]
batch=128
subdivisions=1
height=256
width=256
height=224
width=224
max_crop=320
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.5
learning_rate=0.1
policy=poly
power=6
max_batches=500000
[crop]
crop_height=224
crop_width=224
flip=1
saturation=1
exposure=1
angle=0
power=4
max_batches=1600000
[convolutional]
batch_normalize=1
filters=64
size=7
stride=2
@@ -32,6 +26,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=192
size=3
stride=1
@@ -43,6 +38,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
@@ -50,6 +46,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
@@ -57,6 +54,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
@@ -64,6 +62,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
@@ -75,6 +74,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
@@ -82,6 +82,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
@@ -89,6 +90,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
@@ -96,6 +98,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
@@ -103,6 +106,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
@@ -110,6 +114,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
@@ -117,6 +122,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
@@ -124,6 +130,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
@@ -131,6 +138,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
@@ -138,6 +146,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
@@ -149,6 +158,7 @@
stride=2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
@@ -156,6 +166,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
@@ -163,6 +174,7 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
@@ -170,18 +182,22 @@
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=leaky
[avgpool]
[connected]
output=1000
activation=leaky
[softmax]
groups=1
src/blas.c
@@ -1,6 +1,27 @@
#include "blas.h"
#include "math.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void reorg(float *x, int size, int layers, int batch, int forward)
{
    float *swap = calloc(size*layers*batch, sizeof(float));
    int i,c,b;
    for(b = 0; b < batch; ++b){
        for(c = 0; c < layers; ++c){
            for(i = 0; i < size; ++i){
                int i1 = b*layers*size + c*size + i;
                int i2 = b*layers*size + i*layers + c;
                if (forward) swap[i2] = x[i1];
                else swap[i1] = x[i2];
            }
        }
    }
    memcpy(x, swap, size*layers*batch*sizeof(float));
    free(swap);
}
void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
{
src/blas.h
@@ -1,5 +1,6 @@
#ifndef BLAS_H
#define BLAS_H
void reorg(float *x, int size, int layers, int batch, int forward);
void pm(int M, int N, float *A);
float *random_matrix(int rows, int cols);
void time_random_matrix(int TA, int TB, int m, int k, int n);
@@ -69,6 +70,7 @@
void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c);
void mult_add_into_gpu(int num, float *a, float *b, float *c);
void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out);
#endif
#endif
src/blas_kernels.cu
@@ -312,6 +312,38 @@
    variance[i] *= scale;
}
__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i >= N) return;
    int in_index = i;
    int in_w = i%w;
    i = i/w;
    int in_h = i%h;
    i = i/h;
    int in_c = i%c;
    i = i/c;
    int b = i%batch;
    int out_c = c/(stride*stride);
    int c2 = in_c % out_c;
    int offset = in_c / out_c;
    int w2 = in_w*stride + offset % stride;
    int h2 = in_h*stride + offset / stride;
    //printf("%d\n", offset);
    int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
   // printf("%d %d %d\n", w2, h2, c2);
    //printf("%d %d\n", in_index, out_index);
    //if(out_index >= N || out_index < 0) printf("bad bad bad \n");
    if(forward) out[out_index] = x[in_index];
    else out[in_index] = x[out_index];
    //if(forward) out[1] = x[1];
    //else out[0] = x[0];
}
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX,  float *Y, int OFFY, int INCY)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -488,6 +520,13 @@
    check_error(cudaPeekAtLastError());
}
extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
{
    int size = w*h*c*batch;
    reorg_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, w, h, c, batch, stride, forward, out);
    check_error(cudaPeekAtLastError());
}
extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
{
    mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
src/classifier.c
@@ -3,6 +3,7 @@
#include "parser.h"
#include "option_list.h"
#include "blas.h"
#include "assert.h"
#include "classifier.h"
#include <sys/time.h>
@@ -40,6 +41,9 @@
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
{
    int nthreads = 2;
    int i;
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
@@ -51,7 +55,8 @@
    }
    if(clear) *net.seen = 0;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int imgs = net.batch*net.subdivisions/nthreads;
    assert(net.batch*net.subdivisions % nthreads == 0);
    list *options = read_data_cfg(datacfg);
@@ -66,9 +71,10 @@
    printf("%d\n", plist->size);
    int N = plist->size;
    clock_t time;
    pthread_t load_thread;
    data train;
    data buffer;
    pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t));
    data *trains  = calloc(nthreads, sizeof(data));
    data *buffers = calloc(nthreads, sizeof(data));
    load_args args = {0};
    args.w = net.w;
@@ -83,17 +89,27 @@
    args.n = imgs;
    args.m = N;
    args.labels = labels;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    load_thread = load_data_in_thread(args);
    for(i = 0; i < nthreads; ++i){
        args.d = buffers + i;
        load_threads[i] = load_data_in_thread(args);
    }
    int epoch = (*net.seen)/N;
    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        for(i = 0; i < nthreads; ++i){
            pthread_join(load_threads[i], 0);
            trains[i] = buffers[i];
        }
        data train = concat_datas(trains, nthreads);
        load_thread = load_data_in_thread(args);
        for(i = 0; i < nthreads; ++i){
            args.d = buffers + i;
            load_threads[i] = load_data_in_thread(args);
        }
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
@@ -111,6 +127,9 @@
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        free_data(train);
        for(i = 0; i < nthreads; ++i){
            free_data(trains[i]);
        }
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
@@ -127,8 +146,14 @@
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);
    pthread_join(load_thread, 0);
    free_data(buffer);
    for(i = 0; i < nthreads; ++i){
        pthread_join(load_threads[i], 0);
        free_data(buffers[i]);
    }
    free(buffers);
    free(trains);
    free(load_threads);
    free_network(net);
    free_ptrs((void**)labels, classes);
    free_ptrs((void**)paths, plist->size);
@@ -136,7 +161,7 @@
    free(base);
}
void validate_classifier(char *datacfg, char *filename, char *weightfile)
void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
{
    int i = 0;
    network net = parse_network_cfg(filename);
@@ -708,10 +733,10 @@
    else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
    else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
    else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
    else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
    else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights);
    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
    else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights);
    else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
}
src/convolutional_layer.c
@@ -104,36 +104,37 @@
size_t get_workspace_size(layer l){
#ifdef CUDNN
    size_t most = 0;
    size_t s = 0;
    cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            l.fw_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            l.bf_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            l.bd_algo,
            &s);
    if (s > most) most = s;
    return most;
#else
    if(gpu_index >= 0){
        size_t most = 0;
        size_t s = 0;
        cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
                l.srcTensorDesc,
                l.filterDesc,
                l.convDesc,
                l.dstTensorDesc,
                l.fw_algo,
                &s);
        if (s > most) most = s;
        cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
                l.srcTensorDesc,
                l.ddstTensorDesc,
                l.convDesc,
                l.dfilterDesc,
                l.bf_algo,
                &s);
        if (s > most) most = s;
        cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
                l.filterDesc,
                l.ddstTensorDesc,
                l.convDesc,
                l.dsrcTensorDesc,
                l.bd_algo,
                &s);
        if (s > most) most = s;
        return most;
    }
    #endif
    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
#endif
}
#ifdef GPU
@@ -240,49 +241,51 @@
    }
#ifdef GPU
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
    if(gpu_index >= 0){
        l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
        l.biases_gpu = cuda_make_array(l.biases, n);
        l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    l.scales_gpu = cuda_make_array(l.scales, n);
    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
        l.scales_gpu = cuda_make_array(l.scales, n);
        l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
        l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    if(binary){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    }
    if(xnor){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
    }
        if(binary){
            l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        }
        if(xnor){
            l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
            l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
        }
    if(batch_normalize){
        l.mean_gpu = cuda_make_array(l.mean, n);
        l.variance_gpu = cuda_make_array(l.variance, n);
        if(batch_normalize){
            l.mean_gpu = cuda_make_array(l.mean, n);
            l.variance_gpu = cuda_make_array(l.variance, n);
        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
            l.rolling_mean_gpu = cuda_make_array(l.mean, n);
            l.rolling_variance_gpu = cuda_make_array(l.variance, n);
        l.mean_delta_gpu = cuda_make_array(l.mean, n);
        l.variance_delta_gpu = cuda_make_array(l.variance, n);
            l.mean_delta_gpu = cuda_make_array(l.mean, n);
            l.variance_delta_gpu = cuda_make_array(l.variance, n);
        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    }
            l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
            l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        }
#ifdef CUDNN
    cudnnCreateTensorDescriptor(&l.srcTensorDesc);
    cudnnCreateTensorDescriptor(&l.dstTensorDesc);
    cudnnCreateFilterDescriptor(&l.filterDesc);
    cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
    cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
    cudnnCreateFilterDescriptor(&l.dfilterDesc);
    cudnnCreateConvolutionDescriptor(&l.convDesc);
    cudnn_convolutional_setup(&l);
        cudnnCreateTensorDescriptor(&l.srcTensorDesc);
        cudnnCreateTensorDescriptor(&l.dstTensorDesc);
        cudnnCreateFilterDescriptor(&l.filterDesc);
        cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
        cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
        cudnnCreateFilterDescriptor(&l.dfilterDesc);
        cudnnCreateConvolutionDescriptor(&l.convDesc);
        cudnn_convolutional_setup(&l);
#endif
    }
#endif
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;
src/darknet.c
@@ -12,6 +12,7 @@
#include "opencv2/highgui/highgui_c.h"
#endif
extern void run_voxel(int argc, char **argv);
extern void run_imagenet(int argc, char **argv);
extern void run_yolo(int argc, char **argv);
extern void run_detector(int argc, char **argv);
@@ -28,6 +29,7 @@
extern void run_cifar(int argc, char **argv);
extern void run_go(int argc, char **argv);
extern void run_art(int argc, char **argv);
extern void run_super(int argc, char **argv);
void change_rate(char *filename, float scale, float add)
{
@@ -89,6 +91,23 @@
    save_weights(sum, outfile);
}
void speed(char *cfgfile, int tics)
{
    if (tics == 0) tics = 1000;
    network net = parse_network_cfg(cfgfile);
    set_batch_network(&net, 1);
    int i;
    time_t start = time(0);
    image im = make_image(net.w, net.h, net.c);
    for(i = 0; i < tics; ++i){
        network_predict(net, im.data);
    }
    double t = difftime(time(0), start);
    printf("\n%d evals, %f Seconds\n", tics, t);
    printf("Speed: %f sec/eval\n", t/tics);
    printf("Speed: %f Hz\n", tics/t);
}
void operations(char *cfgfile)
{
    gpu_index = -1;
@@ -314,6 +333,10 @@
        average(argc, argv);
    } else if (0 == strcmp(argv[1], "yolo")){
        run_yolo(argc, argv);
    } else if (0 == strcmp(argv[1], "voxel")){
        run_voxel(argc, argv);
    } else if (0 == strcmp(argv[1], "super")){
        run_super(argc, argv);
    } else if (0 == strcmp(argv[1], "detector")){
        run_detector(argc, argv);
    } else if (0 == strcmp(argv[1], "cifar")){
@@ -339,7 +362,7 @@
    } else if (0 == strcmp(argv[1], "writing")){
        run_writing(argc, argv);
    } else if (0 == strcmp(argv[1], "3d")){
        composite_3d(argv[2], argv[3], argv[4]);
        composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
    } else if (0 == strcmp(argv[1], "test")){
        test_resize(argv[2]);
    } else if (0 == strcmp(argv[1], "captcha")){
@@ -360,6 +383,8 @@
        rescale_net(argv[2], argv[3], argv[4]);
    } else if (0 == strcmp(argv[1], "ops")){
        operations(argv[2]);
    } else if (0 == strcmp(argv[1], "speed")){
        speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0);
    } else if (0 == strcmp(argv[1], "partial")){
        partial(argv[2], argv[3], argv[4], atoi(argv[5]));
    } else if (0 == strcmp(argv[1], "average")){
src/data.c
@@ -8,6 +8,7 @@
#include <string.h>
unsigned int data_seed;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
list *get_paths(char *filename)
{
@@ -26,12 +27,14 @@
{
    char **random_paths = calloc(n, sizeof(char*));
    int i;
    pthread_mutex_lock(&mutex);
    for(i = 0; i < n; ++i){
        int index = rand_r(&data_seed)%m;
        indexes[i] = index;
        random_paths[i] = paths[index];
        if(i == 0) printf("%s\n", paths[index]);
    }
    pthread_mutex_unlock(&mutex);
    return random_paths;
}
@@ -39,11 +42,13 @@
{
    char **random_paths = calloc(n, sizeof(char*));
    int i;
    pthread_mutex_lock(&mutex);
    for(i = 0; i < n; ++i){
        int index = rand_r(&data_seed)%m;
        random_paths[i] = paths[index];
        if(i == 0) printf("%s\n", paths[index]);
    }
    pthread_mutex_unlock(&mutex);
    return random_paths;
}
@@ -105,7 +110,7 @@
    for(i = 0; i < n; ++i){
        image im = load_image_color(paths[i], 0, 0);
        image crop = random_crop_image(im, min, max, size);
        image crop = random_resize_crop_image(im, min, max, size);
        int flip = rand_r(&data_seed)%2;
        if (flip) flip_image(crop);
        /*
@@ -667,6 +672,8 @@
        *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
    } else if (a.type == CLASSIFICATION_DATA){
        *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
    } else if (a.type == SUPER_DATA){
        *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
    } else if (a.type == STUDY_DATA){
        *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
    } else if (a.type == WRITING_DATA){
@@ -737,6 +744,36 @@
    return d;
}
data load_data_super(char **paths, int n, int m, int w, int h, int scale)
{
    if(m) paths = get_random_paths(paths, n, m);
    data d = {0};
    d.shallow = 0;
    int i;
    d.X.rows = n;
    d.X.vals = calloc(n, sizeof(float*));
    d.X.cols = w*h*3;
    d.y.rows = n;
    d.y.vals = calloc(n, sizeof(float*));
    d.y.cols = w*scale * h*scale * 3;
    for(i = 0; i < n; ++i){
        image im = load_image_color(paths[i], 0, 0);
        image crop = random_crop_image(im, w*scale, h*scale);
        int flip = rand_r(&data_seed)%2;
        if (flip) flip_image(crop);
        image resize = resize_image(crop, w, h);
        d.X.vals[i] = resize.data;
        d.y.vals[i] = crop.data;
        free_image(im);
    }
    if(m) free(paths);
    return d;
}
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size)
{
    if(m) paths = get_random_paths(paths, n, m);
@@ -786,6 +823,19 @@
    return d;
}
data concat_datas(data *d, int n)
{
    int i;
    data out = {0};
    out.shallow = 1;
    for(i = 0; i < n; ++i){
        data new = concat_data(d[i], out);
        free_data(out);
        out = new;
    }
    return out;
}
data load_categorical_data_csv(char *filename, int target, int k)
{
    data d = {0};
src/data.h
@@ -30,7 +30,7 @@
} data;
typedef enum {
    CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA
    CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA
} data_type;
typedef struct load_args{
@@ -49,6 +49,7 @@
    int min, max, size;
    int classes;
    int background;
    int scale;
    float jitter;
    data *d;
    image *im;
@@ -73,6 +74,7 @@
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter);
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
data load_data_super(char **paths, int n, int m, int w, int h, int scale);
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
data load_go(char *filename);
@@ -94,6 +96,7 @@
void randomize_data(data d);
data *split_data(data d, int part, int total);
data concat_data(data d1, data d2);
data concat_datas(data *d, int n);
void fill_truth(char *path, char **labels, int k, float *truth);
#endif
src/detector.c
New file
@@ -0,0 +1,398 @@
#include "network.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
static image voc_labels[20];
void train_detector(char *cfgfile, char *weightfile)
{
    char *train_images = "/data/voc/train.txt";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int i = *net.seen/imgs;
    data train, buffer;
    layer l = net.layers[net.n - 1];
    int classes = l.classes;
    float jitter = l.jitter;
    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = l.max_boxes;
    args.d = &buffer;
    args.type = DETECTION_DATA;
    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);
/*
        int k;
        for(k = 0; k < l.max_boxes; ++k){
            box b = float_to_box(train.y.vals[10] + 1 + k*5);
            if(!b.x) break;
            printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
        }
        image im = float_to_image(448, 448, 3, train.X.vals[10]);
        int k;
        for(k = 0; k < l.max_boxes; ++k){
            box b = float_to_box(train.y.vals[10] + 1 + k*5);
            printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
            draw_bbox(im, b, 8, 1,0,0);
        }
        save_image(im, "truth11");
*/
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
{
    int i,j,n;
    //int per_cell = 5*num+classes;
    for (i = 0; i < side*side; ++i){
        int row = i / side;
        int col = i % side;
        for(n = 0; n < num; ++n){
            int index = i*num + n;
            int p_index = index * (classes + 5) + 4;
            float scale = predictions[p_index];
            int box_index = index * (classes + 5);
            boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
            boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
            boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
            boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
            for(j = 0; j < classes; ++j){
                int class_index = index * (classes + 5) + 5;
                float prob = scale*predictions[class_index+j];
                probs[index][j] = (prob > thresh) ? prob : 0;
            }
            if(only_objectness){
                probs[index][0] = scale;
            }
        }
    }
}
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
{
    int i, j;
    for(i = 0; i < total; ++i){
        float xmin = boxes[i].x - boxes[i].w/2.;
        float xmax = boxes[i].x + boxes[i].w/2.;
        float ymin = boxes[i].y - boxes[i].h/2.;
        float ymax = boxes[i].y + boxes[i].h/2.;
        if (xmin < 0) xmin = 0;
        if (ymin < 0) ymin = 0;
        if (xmax > w) xmax = w;
        if (ymax > h) ymax = h;
        for(j = 0; j < classes; ++j){
            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
                    xmin, ymin, xmax, ymax);
        }
    }
}
void validate_detector(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
    //list *plist = get_paths("data/voc.2012.test");
    char **paths = (char **)list_to_array(plist);
    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int side = l.w;
    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
    int m = plist->size;
    int i=0;
    int t;
    float thresh = .001;
    float nms = .5;
    int nthreads = 2;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;
    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0);
            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms);
            print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void validate_detector_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
    char *base = "results/comp4_det_test_";
    list *plist = get_paths("data/voc.2007.test");
    char **paths = (char **)list_to_array(plist);
    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;
    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
    int m = plist->size;
    int i=0;
    float thresh = .001;
    float iou_thresh = .5;
    float nms = .4;
    int total = 0;
    int correct = 0;
    int proposals = 0;
    float avg_iou = 0;
    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1);
        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }
        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
}
void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer l = net.layers[net.n-1];
    l.side = l.w;
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    int j;
    float nms=.4;
    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0);
        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
        save_image(im, "predictions");
        show_image(im, "predictions");
        free_image(im);
        free_image(sized);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
void run_detector(int argc, char **argv)
{
    int i;
    for(i = 0; i < 20; ++i){
        char buff[256];
        sprintf(buff, "data/labels/%s.png", voc_names[i]);
        voc_labels[i] = load_image_color(buff, 0, 0);
    }
    float thresh = find_float_arg(argc, argv, "-thresh", .2);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    char *filename = (argc > 5) ? argv[5]: 0;
    if(0==strcmp(argv[2], "test")) test_detector(cfg, weights, filename, thresh);
    else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights);
    else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
}
src/image.c
@@ -347,23 +347,6 @@
#endif
    }
    void save_image(image im, const char *name)
    {
        char buff[256];
        //sprintf(buff, "%s (%d)", name, windows);
        sprintf(buff, "%s.png", name);
        unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
        int i,k;
        for(k = 0; k < im.c; ++k){
            for(i = 0; i < im.w*im.h; ++i){
                data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
            }
        }
        int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
        free(data);
        if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
    }
#ifdef OPENCV
    image get_image_from_stream(CvCapture *cap)
    {
@@ -376,7 +359,7 @@
#endif
#ifdef OPENCV
    void save_image_jpg(image p, char *name)
    void save_image_jpg(image p, const char *name)
    {
        image copy = copy_image(p);
        rgbgr_image(copy);
@@ -400,6 +383,28 @@
    }
#endif
    void save_image(image im, const char *name)
    {
        #ifdef OPENCV
        save_image_jpg(im, name);
        #else
        char buff[256];
        //sprintf(buff, "%s (%d)", name, windows);
        sprintf(buff, "%s.png", name);
        unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
        int i,k;
        for(k = 0; k < im.c; ++k){
            for(i = 0; i < im.w*im.h; ++i){
                data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
            }
        }
        int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
        free(data);
        if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
        #endif
    }
    void show_image_layers(image p, char *name)
    {
        int i;
@@ -539,7 +544,7 @@
    return best;
}
void composite_3d(char *f1, char *f2, char *out)
void composite_3d(char *f1, char *f2, char *out, int delta)
{
    if(!out) out = "out";
    image a = load_image(f1, 0,0,0);
@@ -551,7 +556,7 @@
    image c2 = crop_image(b, -10, shift, b.w, b.h);
    float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100);
    if(d2 < d1){
    if(d2 < d1 && 0){
        image swap = a;
        a = b;
        b = swap;
@@ -562,7 +567,7 @@
        printf("%d\n", shift);
    }
    image c = crop_image(b, 0, shift, a.w, a.h);
    image c = crop_image(b, delta, shift, a.w, a.h);
    int i;
    for(i = 0; i < c.w*c.h; ++i){
        c.data[i] = a.data[i];
@@ -590,7 +595,15 @@
    return resized;
}
image random_crop_image(image im, int low, int high, int size)
image random_crop_image(image im, int w, int h)
{
    int dx = rand_int(0, im.w - w);
    int dy = rand_int(0, im.h - h);
    image crop = crop_image(im, dx, dy, w, h);
    return crop;
}
image random_resize_crop_image(image im, int low, int high, int size)
{
    int r = rand_int(low, high);
    image resized = resize_min(im, r);
src/image.h
@@ -30,7 +30,8 @@
image image_distance(image a, image b);
void scale_image(image m, float s);
image crop_image(image im, int dx, int dy, int w, int h);
image random_crop_image(image im, int low, int high, int size);
image random_crop_image(image im, int w, int h);
image random_resize_crop_image(image im, int low, int high, int size);
image resize_image(image im, int w, int h);
image resize_min(image im, int min);
void translate_image(image m, float s);
@@ -44,7 +45,8 @@
void hsv_to_rgb(image im);
void rgbgr_image(image im);
void constrain_image(image im);
void composite_3d(char *f1, char *f2, char *out);
void composite_3d(char *f1, char *f2, char *out, int delta);
int best_3d_shift_r(image a, image b, int min, int max);
image grayscale_image(image im);
image threshold_image(image im, float thresh);
@@ -61,7 +63,7 @@
void show_image_collapsed(image p, char *name);
#ifdef OPENCV
void save_image_jpg(image p, char *name);
void save_image_jpg(image p, const char *name);
image get_image_from_stream(CvCapture *cap);
image ipl_to_image(IplImage* src);
#endif
src/layer.h
@@ -30,6 +30,7 @@
    NETWORK,
    XNOR,
    REGION,
    REORG,
    BLANK
} LAYER_TYPE;
@@ -80,6 +81,7 @@
    int does_cost;
    int joint;
    int noadjust;
    int reorg;
    float alpha;
    float beta;
src/network.c
@@ -20,6 +20,7 @@
#include "normalization_layer.h"
#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
@@ -98,6 +99,8 @@
            return "crnn";
        case MAXPOOL:
            return "maxpool";
        case REORG:
            return "reorg";
        case AVGPOOL:
            return "avgpool";
        case SOFTMAX:
@@ -181,6 +184,8 @@
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == REORG){
            forward_reorg_layer(l, state);
        } else if(l.type == AVGPOOL){
            forward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
@@ -222,7 +227,7 @@
float *get_network_output(network net)
{
    #ifdef GPU
        return get_network_output_gpu(net);
        if (gpu_index >= 0) return get_network_output_gpu(net);
    #endif 
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
@@ -279,6 +284,8 @@
            backward_batchnorm_layer(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer(l, state);
        } else if(l.type == REORG){
            backward_reorg_layer(l, state);
        } else if(l.type == AVGPOOL){
            backward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
@@ -366,6 +373,7 @@
    return (float)sum/(n*batch);
}
float train_network_batch(network net, data d, int n)
{
    int i,j;
@@ -422,6 +430,8 @@
            resize_crop_layer(&l, w, h);
        }else if(l.type == MAXPOOL){
            resize_maxpool_layer(&l, w, h);
        }else if(l.type == REORG){
            resize_reorg_layer(&l, w, h);
        }else if(l.type == AVGPOOL){
            resize_avgpool_layer(&l, w, h);
        }else if(l.type == NORMALIZATION){
@@ -439,11 +449,16 @@
        if(l.type == AVGPOOL) break;
    }
#ifdef GPU
    if(gpu_index >= 0){
        cuda_free(net->workspace);
        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
#else
    }else {
        free(net->workspace);
        net->workspace = calloc(1, workspace_size);
    }
#else
    free(net->workspace);
    net->workspace = calloc(1, workspace_size);
#endif
    //fprintf(stderr, " Done!\n");
    return 0;
@@ -659,10 +674,10 @@
        free_layer(net.layers[i]);
    }
    free(net.layers);
    #ifdef GPU
#ifdef GPU
    if(*net.input_gpu) cuda_free(*net.input_gpu);
    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
    if(net.input_gpu) free(net.input_gpu);
    if(net.truth_gpu) free(net.truth_gpu);
    #endif
#endif
}
src/network.h
@@ -41,6 +41,8 @@
    int max_crop;
    int min_crop;
    int gpu_index;
    #ifdef GPU
    float **input_gpu;
    float **truth_gpu;
src/network_kernels.cu
@@ -24,6 +24,7 @@
#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "avgpool_layer.h"
#include "normalization_layer.h"
#include "batchnorm_layer.h"
@@ -82,6 +83,8 @@
            forward_batchnorm_layer_gpu(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer_gpu(l, state);
        } else if(l.type == REORG){
            forward_reorg_layer_gpu(l, state);
        } else if(l.type == AVGPOOL){
            forward_avgpool_layer_gpu(l, state);
        } else if(l.type == DROPOUT){
@@ -122,6 +125,8 @@
            backward_local_layer_gpu(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer_gpu(l, state);
        } else if(l.type == REORG){
            backward_reorg_layer_gpu(l, state);
        } else if(l.type == AVGPOOL){
            if(i != 0) backward_avgpool_layer_gpu(l, state);
        } else if(l.type == DROPOUT){
@@ -179,7 +184,7 @@
    }
}
float train_network_datum_gpu(network net, float *x, float *y)
void forward_backward_network_gpu(network net, float *x, float *y)
{
    network_state state;
    state.index = 0;
@@ -200,12 +205,64 @@
    state.train = 1;
    forward_network_gpu(net, state);
    backward_network_gpu(net, state);
}
float train_network_datum_gpu(network net, float *x, float *y)
{
    forward_backward_network_gpu(net, x, y);
    float error = get_network_cost(net);
    if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
    return error;
}
typedef struct {
    network net;
    float *X;
    float *y;
} train_args;
void *train_thread(void *ptr)
{
    train_args args = *(train_args*)ptr;
    cudaError_t status = cudaSetDevice(args.net.gpu_index);
    check_error(status);
    forward_backward_network_gpu(args.net, args.X, args.y);
    free(ptr);
    return 0;
}
pthread_t train_network_in_thread(train_args args)
{
    pthread_t thread;
    train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
    *ptr = args;
    if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
    return thread;
}
float train_networks(network *nets, int n, data d)
{
    int batch = nets[0].batch;
    float **X = (float **) calloc(n, sizeof(float *));
    float **y = (float **) calloc(n, sizeof(float *));
    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        X[i] = (float *) calloc(batch*d.X.cols, sizeof(float));
        y[i] = (float *) calloc(batch*d.y.cols, sizeof(float));
        get_next_batch(d, batch, i*batch, X[i], y[i]);
        float err = train_network_datum(nets[i], X[i], y[i]);
        sum += err;
    }
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
float *get_network_output_layer_gpu(network net, int i)
{
    layer l = net.layers[i];
src/parser.c
@@ -3,6 +3,7 @@
#include <stdlib.h>
#include "parser.h"
#include "assert.h"
#include "activations.h"
#include "crop_layer.h"
#include "cost_layer.h"
@@ -16,6 +17,7 @@
#include "gru_layer.h"
#include "crnn_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
@@ -43,6 +45,7 @@
int is_gru(section *s);
int is_crnn(section *s);
int is_maxpool(section *s);
int is_reorg(section *s);
int is_avgpool(section *s);
int is_dropout(section *s);
int is_softmax(section *s);
@@ -115,13 +118,6 @@
    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_deconvolutional_layer(layer);
    #endif
    return layer;
}
@@ -169,13 +165,6 @@
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_convolutional_layer(layer);
    #endif
    return layer;
}
@@ -229,13 +218,6 @@
    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer.biases, output);
    parse_data(weights, layer.weights, params.inputs*output);
    #ifdef GPU
    if(weights || biases) push_connected_layer(layer);
    #endif
    return layer;
}
@@ -286,6 +268,7 @@
    layer.class_scale = option_find_float(options, "class_scale", 1);
    layer.jitter = option_find_float(options, "jitter", .2);
    layer.random = option_find_int_quiet(options, "random", 0);
    layer.reorg = option_find_int_quiet(options, "reorg", 0);
    return layer;
}
@@ -322,6 +305,21 @@
    return l;
}
layer parse_reorg(list *options, size_params params)
{
    int stride = option_find_int(options, "stride",1);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before reorg layer must output image.");
    layer layer = make_reorg_layer(batch,w,h,c,stride);
    return layer;
}
maxpool_layer parse_maxpool(list *options, size_params params)
{
    int stride = option_find_int(options, "stride",1);
@@ -590,6 +588,8 @@
            l = parse_batchnorm(options, params);
        }else if(is_maxpool(s)){
            l = parse_maxpool(options, params);
        }else if(is_reorg(s)){
            l = parse_reorg(options, params);
        }else if(is_avgpool(s)){
            l = parse_avgpool(options, params);
        }else if(is_route(s)){
@@ -626,9 +626,13 @@
    net.outputs = get_network_output_size(net);
    net.output = get_network_output(net);
    if(workspace_size){
    //printf("%ld\n", workspace_size);
        //printf("%ld\n", workspace_size);
#ifdef GPU
        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        if(gpu_index >= 0){
            net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net.workspace = calloc(1, workspace_size);
        }
#else
        net.workspace = calloc(1, workspace_size);
#endif
@@ -659,6 +663,7 @@
            || strcmp(type, "[connected]")==0) return CONNECTED;
    if (strcmp(type, "[max]")==0
            || strcmp(type, "[maxpool]")==0) return MAXPOOL;
    if (strcmp(type, "[reorg]")==0) return REORG;
    if (strcmp(type, "[avg]")==0
            || strcmp(type, "[avgpool]")==0) return AVGPOOL;
    if (strcmp(type, "[dropout]")==0) return DROPOUT;
@@ -731,6 +736,10 @@
    return (strcmp(s->type, "[conn]")==0
            || strcmp(s->type, "[connected]")==0);
}
int is_reorg(section *s)
{
    return (strcmp(s->type, "[reorg]")==0);
}
int is_maxpool(section *s)
{
    return (strcmp(s->type, "[max]")==0
src/region_layer.c
New file
@@ -0,0 +1,286 @@
#include "region_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
{
    region_layer l = {0};
    l.type = REGION;
    l.n = n;
    l.batch = batch;
    l.h = h;
    l.w = w;
    l.classes = classes;
    l.coords = coords;
    l.cost = calloc(1, sizeof(float));
    l.outputs = h*w*n*(classes + coords + 1);
    l.inputs = l.outputs;
    l.truths = 30*(5);
    l.delta = calloc(batch*l.outputs, sizeof(float));
    l.output = calloc(batch*l.outputs, sizeof(float));
#ifdef GPU
    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
    fprintf(stderr, "Region Layer\n");
    srand(0);
    return l;
}
box get_region_box2(float *x, int index, int i, int j, int w, int h)
{
    float aspect = exp(x[index+0]);
    float scale  = logistic_activate(x[index+1]);
    float move_x = x[index+2];
    float move_y = x[index+3];
    box b;
    b.w = sqrt(scale * aspect);
    b.h = b.w * 1./aspect;
    b.x = move_x * b.w + (i + .5)/w;
    b.y = move_y * b.h + (j + .5)/h;
    return b;
}
float delta_region_box2(box truth, float *output, int index, int i, int j, int w, int h, float *delta)
{
    box pred = get_region_box2(output, index, i, j, w, h);
    float iou = box_iou(pred, truth);
    float true_aspect = truth.w/truth.h;
    float true_scale = truth.w*truth.h;
    float true_dx = (truth.x - (i+.5)/w) / truth.w;
    float true_dy = (truth.y - (j+.5)/h) / truth.h;
    delta[index + 0] = (true_aspect - exp(output[index + 0])) * exp(output[index + 0]);
    delta[index + 1] = (true_scale - logistic_activate(output[index + 1])) * logistic_gradient(logistic_activate(output[index + 1]));
    delta[index + 2] = true_dx - output[index + 2];
    delta[index + 3] = true_dy - output[index + 3];
    return iou;
}
box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust, int logistic)
{
    box b;
    b.x = (x[index + 0] + i + .5)/w;
    b.y = (x[index + 1] + j + .5)/h;
    b.w = x[index + 2];
    b.h = x[index + 3];
    if(logistic){
        b.w = logistic_activate(x[index + 2]);
        b.h = logistic_activate(x[index + 3]);
    }
    if(adjust && b.w < .01) b.w = .01;
    if(adjust && b.h < .01) b.h = .01;
    return b;
}
float delta_region_box(box truth, float *output, int index, int i, int j, int w, int h, float *delta, int logistic, float scale)
{
    box pred = get_region_box(output, index, i, j, w, h, 0, logistic);
    float iou = box_iou(pred, truth);
    delta[index + 0] = scale * (truth.x - pred.x);
    delta[index + 1] = scale * (truth.y - pred.y);
    delta[index + 2] = scale * ((truth.w - pred.w)*(logistic ? logistic_gradient(pred.w) : 1));
    delta[index + 3] = scale * ((truth.h - pred.h)*(logistic ? logistic_gradient(pred.h) : 1));
    return iou;
}
float logit(float x)
{
    return log(x/(1.-x));
}
float tisnan(float x)
{
    return (x != x);
}
#define LOG 1
void forward_region_layer(const region_layer l, network_state state)
{
    int i,j,b,t,n;
    int size = l.coords + l.classes + 1;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
    for (b = 0; b < l.batch; ++b){
        for(i = 0; i < l.h*l.w*l.n; ++i){
            int index = size*i + b*l.outputs;
            l.output[index + 4] = logistic_activate(l.output[index + 4]);
            if(l.softmax){
                softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5);
            }
        }
    }
    if(!state.train) return;
    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
    float avg_iou = 0;
    float avg_cat = 0;
    float avg_obj = 0;
    float avg_anyobj = 0;
    int count = 0;
    *(l.cost) = 0;
    for (b = 0; b < l.batch; ++b) {
        for (j = 0; j < l.h; ++j) {
            for (i = 0; i < l.w; ++i) {
                for (n = 0; n < l.n; ++n) {
                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                    box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
                    float best_iou = 0;
                    for(t = 0; t < 30; ++t){
                        box truth = float_to_box(state.truth + t*5 + b*l.truths);
                        if(!truth.x) break;
                        float iou = box_iou(pred, truth);
                        if (iou > best_iou) best_iou = iou;
                    }
                    avg_anyobj += l.output[index + 4];
                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
                    if(best_iou > .5) l.delta[index + 4] = 0;
                    if(*(state.net.seen) < 6400){
                        box truth = {0};
                        truth.x = (i + .5)/l.w;
                        truth.y = (j + .5)/l.h;
                        truth.w = .5;
                        truth.h = .5;
                        delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1);
                    }
                }
            }
        }
        for(t = 0; t < 30; ++t){
            box truth = float_to_box(state.truth + t*5 + b*l.truths);
            int class = state.truth[t*5 + b*l.truths + 4];
            if(!truth.x) break;
            float best_iou = 0;
            int best_index = 0;
            int best_n = 0;
            i = (truth.x * l.w);
            j = (truth.y * l.h);
            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
            box truth_shift = truth;
            truth_shift.x = 0;
            truth_shift.y = 0;
            printf("index %d %d\n",i, j);
            for(n = 0; n < l.n; ++n){
                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
                printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                pred.x = 0;
                pred.y = 0;
                float iou = box_iou(pred, truth_shift);
                if (iou > best_iou){
                    best_index = index;
                    best_iou = iou;
                    best_n = n;
                }
            }
            printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
            float iou = delta_region_box(truth, l.output, best_index, i, j, l.w, l.h, l.delta, LOG, l.coord_scale);
            avg_iou += iou;
            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
            avg_obj += l.output[best_index + 4];
            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
            if (l.rescore) {
                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
            }
            //printf("%f\n", l.delta[best_index+1]);
            /*
               if(isnan(l.delta[best_index+1])){
               printf("%f\n", true_scale);
               printf("%f\n", l.output[best_index + 1]);
               printf("%f\n", truth.w);
               printf("%f\n", truth.h);
               error("bad");
               }
             */
            for(n = 0; n < l.classes; ++n){
                l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
                if(n == class) avg_cat += l.output[best_index + 5 + n];
            }
            /*
               if(0){
               printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
               printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h);
               float aspect = exp(true_aspect);
               float scale  = logistic_activate(true_scale);
               float move_x = true_dx;
               float move_y = true_dy;
               box b;
               b.w = sqrt(scale * aspect);
               b.h = b.w * 1./aspect;
               b.x = move_x * b.w + (i + .5)/l.w;
               b.y = move_y * b.h + (j + .5)/l.h;
               printf("%f %f\n", b.x, truth.x);
               printf("%f %f\n", b.y, truth.y);
               printf("%f %f\n", b.w, truth.w);
               printf("%f %f\n", b.h, truth.h);
            //printf("%f\n", box_iou(b, truth));
            }
             */
            ++count;
        }
    }
    printf("\n");
    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), count);
}
void backward_region_layer(const region_layer l, network_state state)
{
    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
#ifdef GPU
void forward_region_layer_gpu(const region_layer l, network_state state)
{
    /*
       if(!state.train){
       copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
       return;
       }
     */
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        int num_truth = l.batch*l.truths;
        truth_cpu = calloc(num_truth, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, num_truth);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state = state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_region_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
void backward_region_layer_gpu(region_layer l, network_state state)
{
    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
}
#endif
src/region_layer.h
New file
@@ -0,0 +1,18 @@
#ifndef REGION_LAYER_H
#define REGION_LAYER_H
#include "layer.h"
#include "network.h"
typedef layer region_layer;
region_layer make_region_layer(int batch, int h, int w, int n, int classes, int coords);
void forward_region_layer(const region_layer l, network_state state);
void backward_region_layer(const region_layer l, network_state state);
#ifdef GPU
void forward_region_layer_gpu(const region_layer l, network_state state);
void backward_region_layer_gpu(region_layer l, network_state state);
#endif
#endif
src/reorg_layer.c
New file
@@ -0,0 +1,111 @@
#include "reorg_layer.h"
#include "cuda.h"
#include "blas.h"
#include <stdio.h>
layer make_reorg_layer(int batch, int h, int w, int c, int stride)
{
    layer l = {0};
    l.type = REORG;
    l.batch = batch;
    l.stride = stride;
    l.h = h;
    l.w = w;
    l.c = c;
    l.out_w = w*stride;
    l.out_h = h*stride;
    l.out_c = c/(stride*stride);
    fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c);
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = h*w*c;
    int output_size = l.out_h * l.out_w * l.out_c * batch;
    l.output =  calloc(output_size, sizeof(float));
    l.delta =   calloc(output_size, sizeof(float));
    #ifdef GPU
    l.output_gpu  = cuda_make_array(l.output, output_size);
    l.delta_gpu   = cuda_make_array(l.delta, output_size);
    #endif
    return l;
}
void resize_reorg_layer(layer *l, int w, int h)
{
    int stride = l->stride;
    l->h = h;
    l->w = w;
    l->out_w = w*stride;
    l->out_h = h*stride;
    l->outputs = l->out_h * l->out_w * l->out_c;
    l->inputs = l->outputs;
    int output_size = l->outputs * l->batch;
    l->output = realloc(l->output, output_size * sizeof(float));
    l->delta = realloc(l->delta, output_size * sizeof(float));
    #ifdef GPU
    cuda_free(l->output_gpu);
    cuda_free(l->delta_gpu);
    l->output_gpu  = cuda_make_array(l->output, output_size);
    l->delta_gpu   = cuda_make_array(l->delta,  output_size);
    #endif
}
void forward_reorg_layer(const layer l, network_state state)
{
    int b,i,j,k;
    for(b = 0; b < l.batch; ++b){
        for(k = 0; k < l.c; ++k){
            for(j = 0; j < l.h; ++j){
                for(i = 0; i < l.w; ++i){
                    int in_index  = i + l.w*(j + l.h*(k + l.c*b));
                    int c2 = k % l.out_c;
                    int offset = k / l.out_c;
                    int w2 = i*l.stride + offset % l.stride;
                    int h2 = j*l.stride + offset / l.stride;
                    int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
                    l.output[out_index] = state.input[in_index];
                }
            }
        }
    }
}
void backward_reorg_layer(const layer l, network_state state)
{
    int b,i,j,k;
    for(b = 0; b < l.batch; ++b){
        for(k = 0; k < l.c; ++k){
            for(j = 0; j < l.h; ++j){
                for(i = 0; i < l.w; ++i){
                    int in_index  = i + l.w*(j + l.h*(k + l.c*b));
                    int c2 = k % l.out_c;
                    int offset = k / l.out_c;
                    int w2 = i*l.stride + offset % l.stride;
                    int h2 = j*l.stride + offset / l.stride;
                    int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
                    state.delta[in_index] = l.delta[out_index];
                }
            }
        }
    }
}
#ifdef GPU
void forward_reorg_layer_gpu(layer l, network_state state)
{
    reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
}
void backward_reorg_layer_gpu(layer l, network_state state)
{
    reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
}
#endif
src/reorg_layer.h
New file
@@ -0,0 +1,20 @@
#ifndef REORG_LAYER_H
#define REORG_LAYER_H
#include "image.h"
#include "cuda.h"
#include "layer.h"
#include "network.h"
layer make_reorg_layer(int batch, int h, int w, int c, int stride);
void resize_reorg_layer(layer *l, int w, int h);
void forward_reorg_layer(const layer l, network_state state);
void backward_reorg_layer(const layer l, network_state state);
#ifdef GPU
void forward_reorg_layer_gpu(layer l, network_state state);
void backward_reorg_layer_gpu(layer l, network_state state);
#endif
#endif
src/super.c
New file
@@ -0,0 +1,132 @@
#include "network.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
void train_super(char *cfgfile, char *weightfile)
{
    char *train_images = "/data/imagenet/imagenet1k.train.list";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int i = *net.seen/imgs;
    data train, buffer;
    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.scale = 4;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;
    args.type = SUPER_DATA;
    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
void test_super(char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        resize_network(&net, im.w, im.h);
        printf("%d %d\n", im.w, im.h);
        float *X = im.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image(net);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        save_image(out, "out");
        free_image(im);
        if (filename) break;
    }
}
void run_super(int argc, char **argv)
{
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    char *filename = (argc > 5) ? argv[5] : 0;
    if(0==strcmp(argv[2], "train")) train_super(cfg, weights);
    else if(0==strcmp(argv[2], "test")) test_super(cfg, weights, filename);
    /*
    else if(0==strcmp(argv[2], "valid")) validate_super(cfg, weights);
    */
}
src/utils.c
@@ -521,6 +521,11 @@
int rand_int(int min, int max)
{
    if (max < min){
        int s = min;
        min = max;
        max = s;
    }
    int r = (rand()%(max - min + 1)) + min;
    return r;
}
src/voxel.c
New file
@@ -0,0 +1,169 @@
#include "network.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
void extract_voxel(char *lfile, char *rfile, char *prefix)
{
    int w = 1920;
    int h = 1080;
#ifdef OPENCV
        int shift = 0;
        int count = 0;
        CvCapture *lcap = cvCaptureFromFile(lfile);
        CvCapture *rcap = cvCaptureFromFile(rfile);
        while(1){
            image l = get_image_from_stream(lcap);
            image r = get_image_from_stream(rcap);
            if(!l.w || !r.w) break;
            if(count%100 == 0) {
                shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
                printf("%d\n", shift);
            }
            image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
            image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
            char buff[256];
            sprintf(buff, "%s_%05d_l", prefix, count);
            save_image(ls, buff);
            sprintf(buff, "%s_%05d_r", prefix, count);
            save_image(rs, buff);
            free_image(l);
            free_image(r);
            free_image(ls);
            free_image(rs);
            ++count;
        }
#else
printf("need OpenCV for extraction\n");
#endif
}
void train_voxel(char *cfgfile, char *weightfile)
{
    char *train_images = "/data/imagenet/imagenet1k.train.list";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int i = *net.seen/imgs;
    data train, buffer;
    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.scale = 4;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;
    args.type = SUPER_DATA;
    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
void test_voxel(char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        resize_network(&net, im.w, im.h);
        printf("%d %d\n", im.w, im.h);
        float *X = im.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image(net);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        save_image(out, "out");
        free_image(im);
        if (filename) break;
    }
}
void run_voxel(int argc, char **argv)
{
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    char *filename = (argc > 5) ? argv[5] : 0;
    if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
    else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
    else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
    /*
    else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
    */
}