| ai2.mk | ●●●●● patch | view | raw | blame | history | |
| cfg/xyolo.test.cfg | ●●●●● patch | view | raw | blame | history | |
| src/binary_convolution.c | ●●●●● patch | view | raw | blame | history | |
| src/binary_convolution.h | ●●●●● patch | view | raw | blame | history | |
| src/common.c | ●●●●● patch | view | raw | blame | history | |
| src/common.h | ●●●●● patch | view | raw | blame | history | |
| src/convolutional_layer.c | ●●●●● patch | view | raw | blame | history | |
| src/layer.h | ●●●●● patch | view | raw | blame | history | |
| src/parser.c | ●●●●● patch | view | raw | blame | history | |
| src/xnor_layer.c | ●●●●● patch | view | raw | blame | history | |
| src/xnor_layer.h | ●●●●● patch | view | raw | blame | history | |
| src/yolo.c | ●●●●● patch | view | raw | blame | history |
ai2.mk
New file @@ -0,0 +1,79 @@ GPU=0 CUDNN=0 OPENCV=0 DEBUG=0 AI2=1 ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52 VPATH=./src/ EXEC=darknet OBJDIR=./obj/ CC=gcc -std=gnu11 NVCC=nvcc OPTS=-Ofast LDFLAGS= -lm -pthread COMMON= CFLAGS=-Wall -Wfatal-errors ifeq ($(DEBUG), 1) OPTS=-O0 -g endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), 1) COMMON+= -DOPENCV CFLAGS+= -DOPENCV LDFLAGS+= `pkg-config --libs opencv` COMMON+= `pkg-config --cflags opencv` endif ifeq ($(AI2), 1) COMMON+= -DAI2 CFLAGS+= -DAI2 endif ifeq ($(GPU), 1) COMMON+= -DGPU -I/usr/local/cuda/include/ CFLAGS+= -DGPU LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand endif ifeq ($(CUDNN), 1) COMMON+= -DCUDNN CFLAGS+= -DCUDNN LDFLAGS+= -lcudnn endif OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o art.o xnor_layer.o common.o binary_convolution.o ifeq ($(GPU), 1) LDFLAGS+= -lstdc++ OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o endif OBJS = $(addprefix $(OBJDIR), $(OBJ)) DEPS = $(wildcard src/*.h) Makefile all: obj results $(EXEC) $(EXEC): $(OBJS) $(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS) $(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS) $(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj: mkdir -p obj results: mkdir -p results .PHONY: clean clean: rm -rf $(OBJS) $(EXEC) cfg/xyolo.test.cfg
New file @@ -0,0 +1,148 @@ [net] batch=1 subdivisions=1 height=448 width=448 channels=3 momentum=0.9 decay=0.0005 learning_rate=0.0001 policy=steps steps=20,40,60,80,20000,30000 scales=5,5,2,2,.1,.1 max_batches = 40000 [crop] crop_width=448 crop_height=448 flip=0 angle=0 saturation = 1.5 exposure = 1.5 noadjust=1 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=leaky [connected] output= 1470 activation=linear [detection] classes=20 coords=4 rescore=1 side=7 num=2 softmax=0 sqrt=1 jitter=.2 object_scale=1 noobject_scale=.5 class_scale=1 coord_scale=5 src/binary_convolution.c
New file @@ -0,0 +1,598 @@ #include "binary_convolution.h" int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim) { // TODO unroll int accumulator = 0; for (int z = 0; z < vdim.z / BITS_PER_BINARY_WORD; z++) { for (int y = 0; y < vdim.y; y++) { for (int x = 0; x < vdim.x; x++) { int idx = z*vdim.y*vdim.x + y*vdim.x + x; accumulator += __builtin_popcount(~(a[idx] ^ b[idx])); // count the XNOR of the two bit vectors } } } return accumulator; } /** * Pre-conditions: * alpha_volume is an array of size x*y*z. * alpha_plane is an array of size x*y. * alpha_volume (x,y,z) is transposed to (z,x,y). */ void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim) { for (int y = 0; y < vdim.y; ++y) { for (int x = 0; x < vdim.x; ++x) { int out = y * vdim.x + x; double accum = 0.0; for (int z = 0; z < vdim.z; ++z) { accum += alpha_volume[out * vdim.z + z]; } alpha_plane[out] = accum / vdim.z; } } } /** @brief Wrapper function for generating the beta scaling factor */ void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim) { ai2_calc_alpha(beta_plane, beta_volume, vdim); } /** @brief Set the bit in a binary word */ void ai2_bitset(BINARY_WORD *bword, unsigned int position) { BINARY_WORD mask = (1 << position); *bword = *bword | mask; } /** @brief Checks that the bit is set in a binary word */ int ai2_is_set(BINARY_WORD bword, unsigned int position) { unsigned int position_complement = (BITS_PER_BINARY_WORD - 1) - position; // number of leading bits before the bit position of interest bword = (bword << position_complement); // zero out leading bits bword = (bword >> (BITS_PER_BINARY_WORD - 1)); // shift bit position of interest to the 0th position return (bword & 0x1); // test if bit position of interest is set } void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 dim) { ai2_transpose3D(real_vol, dim); // (x,y,z) -> (z,x,y) int sz = dim.x * dim.y * dim.z; for (int i = 0; i < sz; i += BITS_PER_BINARY_WORD) { BINARY_WORD tmp = 0x00000000; for (int x = 0; x < BITS_PER_BINARY_WORD; ++x) { int waddr = x + i; if (signbit(real_vol[waddr]) == 0) ai2_bitset(&tmp, (BITS_PER_BINARY_WORD - 1) - x); } binary_vol[i / BITS_PER_BINARY_WORD] = tmp; } } void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 dim) { // TODO unit tests for (int z = 0; z < dim.z; z++) { for (int y = 0; y < dim.y; y++) { for (int x = 0; x < dim.x / BITS_PER_BINARY_WORD; x++) { // TODO boundary checks, for uneven input BINARY_WORD word = binary_vol[z*dim.y*dim.x + y*dim.x + x]; for (int t = 0; t < BITS_PER_BINARY_WORD; ++t) { int oidx = z*dim.y*dim.x + y*dim.x + x * BITS_PER_BINARY_WORD + t; if (ai2_is_set(word, t)) real_vol[oidx] = 1.f; else real_vol[oidx] = -1.f; } } } } // Transpose channels back to output ai2_transpose3D(real_vol, dim); // (z,y,x) -> (x,y,z) } /* @brief: input is padded. */ void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride) { int r, rd, c, cd; int wx_2 = wx / 2; int wy_2 = wy / 2; // Indexing for output pixels. x = [wx_2, ix + wx_2 - 1], y = [wy_2, iy + wy_2 - 1] int sx = pad; // start x int ex = ix + pad - 1; // end x int sy = pad; // start y int ey = iy + pad - 1; // end y // Indexing for weights int wsx, wex, wsy, wey; if (wx % 2 == 1) { // odd weights wsx = -wx_2; wex = wx_2 + 1; wsy = -wy_2; wey = wy_2 + 1; } else { wsx = -wx_2; wex = wx_2; wsy = -wy_2; wey = wy_2; } int px = ix + 2*pad; //int py = iy + 2*pad; for (r = sy; r <= ey; ++r) { for (c = sx; c <= ex; ++c) { int accumulator = 0; for (rd = wsy; rd < wey; ++rd) { for (cd = wsx; cd < wex; ++cd) { int iidx = (r+rd)*px + (c+cd); BINARY_WORD pixel = input[iidx]; //BINARY_WORD pixel = 0xFFFFFFFF; //BINARY_WORD weight = 0xFFFFFFFF; int widx = (rd + wy_2)*wx + (cd+wx_2); BINARY_WORD weight = weights[widx]; accumulator += __builtin_popcount(~(pixel ^ weight)); } } // Padded space int oidx = r*px + c; output[oidx] += (float) accumulator; } } //for (r = sy; r <= ey; ++r) { // for (c = sx; c <= ex; ++c) { // int accumulator = 0; // for (rd = -wy_2; rd < wy_2; ++rd) { // for (cd = -wx_2; cd < wx_2; ++cd) { // int iidx = (r+rd)*px + (c+cd); // BINARY_WORD pixel = input[iidx]; // //BINARY_WORD pixel = 0xFFFFFFFF; // //BINARY_WORD weight = 0xFFFFFFFF; // int widx = (rd + wy_2)*wx + (cd+wx_2); // BINARY_WORD weight = weights[widx]; // accumulator += __builtin_popcount(~(pixel ^ weight)); // } // } // // Padded space // int oidx = r*px + c; // output[oidx] += (float) accumulator; // } //} //ai2_bin_conv_within_boundary(output, input, weights, ix, iy, wx, wy, stride); //ai2_bin_conv_borders(output, input, weights, ix, iy, wx, wy, stride); } void ai2_pointwise_mul_mm(float *output, const float *input, int N) { int i = 0; while (i + 8 <= N) { output[i+0] *= input[i+0]; output[i+1] *= input[i+1]; output[i+2] *= input[i+2]; output[i+3] *= input[i+3]; output[i+4] *= input[i+4]; output[i+5] *= input[i+5]; output[i+6] *= input[i+6]; output[i+7] *= input[i+7]; i += 8; } while (++i < N) // Finish iteration that's leftover (e.g., last batch not divisible by 8 exactly) output[i] *= input[i]; } /** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors * Pre-conditions: wx < ix, and wy < iy */ void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad) { // Slower version // for (int y = 0; y < iy; ++y) // for (int x = 0; x < ix; x++) // output[y*ix+x] *= input[(y % wy)*wx + (x % wx)]; // Stride prefetch optimized for (int s = 0; s < wy; ++s) { // for each strip const float *strip_ptr = &alpha[s*wx]; for (int y = pad; y < pad + (iy / wy); ++y) { // int stride = y*((ix+2*pad)*wy) + s*(ix+2*pad); float *output_ptr = &output[stride]; for (int x = 0; x < ix; ++x) { output_ptr[x] *= strip_ptr[x % wx]; } } } } void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input) { if (new_input != NULL) { if (layer->input != NULL) free(layer->input); layer->input = new_input; dim3 dim; dim.x = layer->px; dim.y = layer->py; dim.z = layer->c; // Binarize input ai2_flt_to_bin(layer->binary_input, layer->input, dim); float *new_beta = (float *) calloc (dim.x * dim.y, sizeof(float)); ai2_setFltBeta(layer, new_beta); // layer->input is transposed to (z,x,y) already ai2_calc_beta(layer->beta, layer->input, dim); } } void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input) { if (new_input != NULL) { if (layer->binary_input != NULL) free(layer->binary_input); layer->binary_input = new_input; } } void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights) { if (new_weights != NULL) { if (layer->weights != NULL) free(layer->weights); layer->weights = new_weights; dim3 dim; dim.x = layer->wx; dim.y = layer->wy; dim.z = layer->c; ai2_flt_to_bin(layer->binary_weights, layer->weights, dim); // Calculate alpha if (layer->alpha != NULL) free(layer->alpha); layer->alpha = (float *) calloc (dim.x * dim.y, sizeof(float)); // layer->weights is already transposed to (z,x,y) from ai2_flt_to_bin() ai2_calc_alpha(layer->alpha, layer->weights, dim); } } void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights) { if (new_weights != NULL) { if (layer->binary_weights != NULL) free(layer->binary_weights); layer->binary_weights = new_weights; } } void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output) { if (new_output != NULL) { if (layer->output != NULL) free(layer->output); layer->output = new_output; } } void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output) { if (new_output != NULL) { if (layer->binary_output != NULL) free(layer->binary_output); layer->binary_output = new_output; } } void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha) { if (new_alpha != NULL) { if (layer->alpha != NULL) free(layer->alpha); layer->alpha = new_alpha; } } void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta) { if (new_beta != NULL) { if (layer->beta != NULL) free(layer->beta); layer->beta = new_beta; } } void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta) { if (new_new_beta != NULL) { if (layer->new_beta != NULL) free(layer->new_beta); layer->new_beta = new_new_beta; } } float* ai2_getFltOutput(ai2_bin_conv_layer *layer) { //if (layer->output != NULL && layer->binary_output != NULL) { if (layer->output != NULL) { // The idea here was that all intermediate states are stored in the binary output. // Whenever the user needs the real-valued output, the conversion happens at this function call. //dim3 dim; //dim.x = layer->px; //dim.y = layer->py; //dim.z = layer->batch; //ai2_bin_to_flt(layer->output, layer->binary_output, dim); return layer->output; } else return NULL; } void ai2_transpose3D(float *data, dim3 d) { // Slow transpose for correctness // (x,y,z) becomes (z,x,y). Requires two transposes: // (x,y,z) -> (x,z,y). // (x,z,y) -> (z,x,y). // Intermediate buffer float *new_data = (float *) calloc (d.x * d.y * d.z, sizeof(float)); // Transpose y and z axis. // (x,y,z) -> (x,z,y); for (int y = 0; y < d.y; ++y) { for (int z = 0; z < d.z; ++z) { for (int x = 0; x < d.x; ++x) { new_data[y*d.x*d.z + z*d.x + x] = data[z*d.x*d.y + y*d.x + x]; //new_data[z*d.y*d.x + y*d.x + x] = data[y*d.x*d.z + z*d.x + x]; } } } // Transpose x and z axis. // (x,z,y) -> (z,x,y) for (int y = 0; y < d.y; ++y) { for (int x = 0; x < d.x; ++x) { for (int z = 0; z < d.z; ++z) { data[y*d.z*d.x + x*d.z + z] = new_data[y*d.x*d.z + x + z*d.x]; } } } free(new_data); } int ai2_isFloatWhole(float f) { // TODO unit test return (ceilf(f) == f) ? 1 : 0; } /* @brief Initialize and create all memory arrays for this layer * b - batches (number of filter batches) * c - input channels * ix - input width * iy - input height * wx - weight/filter width * wy - weight/filter height * s - stride between sliding windows * pad - the amount of padding */ ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad) { // http://cs231n.github.io/convolutional-networks/ // See: spatial arrangement section for determining what the output size will be float output_size = ((ix - wx + 2 * pad) / s) + 1; if (ai2_isFloatWhole(output_size) == 0) { fprintf(stderr, "ERROR! conv layer of (b,c,ix,iy,s,pad) = (%d, %d, %d, %d, %d, %d) will give " " invalid output dimension: %fx%f\n", b, c, ix, iy, s, pad, output_size, output_size); exit(1); } // TODO: Support strided output if (s != 1) { fprintf(stderr, "ERROR! Only stride values of 1 is supported\n"); exit(1); } // padded input size int px = (int) ix + 2*pad; int py = (int) iy + 2*pad; ai2_bin_conv_layer l = {0}; // initialize all to 0 l.input = (float *) calloc (c * px * py, sizeof(float)); // is padded l.binary_input = (BINARY_WORD *) calloc (c * px * py / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD)); // is padded dim3 dim; dim.x = px; dim.y = py; dim.z = c; ai2_flt_to_bin(l.binary_input, l.input, dim); l.weights = (float *) calloc (b * c * wx * wy, sizeof(float)); l.binary_weights = (BINARY_WORD *) calloc (b * c * wx * wy / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD)); l.output = (float *) calloc (c * px * py, sizeof(float)); // is padded l.new_beta = (float *) calloc(px * py, sizeof(float)); // is padded l.batch = b; l.c = c; l.h = iy; l.w = ix; l.stride = s; l.pad = pad; l.px = px; l.py = py; l.wx = wx; l.wy = wy; // The following parameters are uninitialized and should be set elsewhere: // l.beta - padded // l.alpha - not padded return l; } void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer) { if (layer->input) free (layer->input); if (layer->binary_input) free(layer->binary_input); if (layer->weights) free (layer->weights); if (layer->binary_weights) free(layer->binary_weights); if (layer->output) free(layer->output); if (layer->binary_output) free (layer->binary_output); if (layer->alpha) free(layer->alpha); if (layer->beta) free(layer->beta); if (layer->new_beta) free(layer->new_beta); } void ai2_throw_error(char *str) { fprintf(stderr, "ERROR: %s\n", str); exit(1); } void ai2_bin_forward(ai2_bin_conv_layer *l) { if (l->input == NULL) ai2_throw_error("Input was not allocated and set in this layer"); if (l->weights == NULL) ai2_throw_error("Weights was not allocated and set in this layer"); if (l->output == NULL) ai2_throw_error("Output was not allocated and set in this layer"); if (l->alpha == NULL) ai2_throw_error("Alpha was not allocated and set in this layer"); if (l->beta == NULL) ai2_throw_error("Beta was not allocated and set in this layer"); if (l->c % 32 != 0) ai2_throw_error("Channel is not divisible by 32. Need to implement mask " "before supporting arbitrary channel size. For now, " "set the channel size to the nearest multiple of 32 " "and ignore any ''extra'' channels unused."); l->c /= BITS_PER_BINARY_WORD; // For compensating with doing more work per word float *output = l->output; float *alpha = l->alpha; float *beta = l->beta; int px = l->px; int py = l->py; BINARY_WORD *binary_weights = l->binary_weights; for (int z = 0; z < l->batch; ++z) { // for each filter map BINARY_WORD *binary_input = l->binary_input; for (int c = 0; c < l->c; ++c) { // for each input channel ai2_bin_conv2D(output, binary_input, binary_weights, l->w, l->h, l->wx, l->wy, l->pad, l->stride); binary_input += px*py; // increment with next 2D plane binary_weights += l->wx*l->wy; // increment with next 2D plane ai2_pointwise_mul_mm(output, beta, px*py); ai2_pointwise_mul_mm_2d(output, alpha, l->w, l->h, l->wx, l->wy, l->pad); } } } // Deprecated //double ai2_bin_conv_benchmark(ConvolutionArgs conv_args) { // printf("Running Binary Convolution test!\n"); // // size_t ix, iy, iz, wx, wy, wz, L, stride; // ix = conv_args.input.x; // iy = conv_args.input.y; // iz = conv_args.input.z; // wx = conv_args.weights.x; // wy = conv_args.weights.y; // wz = conv_args.weights.z; // L = BITS_PER_BINARY_WORD; // stride = 1; // // printf("Input size (num elements, xyz): %zu %zu %zu\n", ix, iy, iz); // printf("Weights size (num elements. xyz): %zu %zu %zu\n", wx, wy, wz); // // double sz_input_elements = ix * iy * iz; // double sz_input_bytes = getSizeBytesBinaryArray(conv_args.input); // double sz_weight_bytes = getSizeBytesBinaryArray(conv_args.weights); // // printf("Input Size (MB): %f\n", sz_input_bytes / (1 << 20)); // printf("Weight Size (MB): %f\n", sz_weight_bytes / (1 << 20)); // // BINARY_WORD *binary_input = mallocBinaryVolume(conv_args.input); // BINARY_WORD *binary_weights = mallocBinaryVolume(conv_args.weights); // BINARY_WORD *b_input = binary_input; // alias // BINARY_WORD *b_weight = binary_weights; // alias // float *output = mallocFloatVolume(conv_args.output); // float *output_ptr = output; // float *beta = (float *) malloc(sizeof(float) * ix * iy); // we assume beta is given to us // float *alpha = (float *) malloc(sizeof(float) * wx * wy); // we assume alpha is given to us // float *new_output = mallocFloatVolume(conv_args.output); // //float *new_output_ptr = new_output; // float *new_beta = (float *) malloc(sizeof(float) * ix * iy); // //float *new_beta_ptr = new_beta; // // // Scale number of computations because we're packing. // // After this point, you should not have to reason about input dimensions for input and weights. // iz /= BITS_PER_BINARY_WORD; // wz /= BITS_PER_BINARY_WORD; // // // Calculate time taken by a request // struct timeval start_time; // gettimeofday(&start_time, NULL); // // // Preprocessing // int pad = wx/2; // // for (int z = 0; z < iz; ++z) { // number of channels // ai2_bin_conv2D(output_ptr, b_input, b_weight, ix, iy, wx, wy, pad, stride); // b_input += ix*iy; // increment with next 2D plane // b_weight += wx*wy; // increment with next 2D plane // // ai2_pointwise_mul_mm(output_ptr, beta, ix*iy); // ai2_pointwise_mul_mm_2d(output_ptr, alpha, ix, iy, wx, wy, pad); // } // // // copy to new array (need to wrap this around); TODO. // struct timeval end_time; // gettimeofday(&end_time, NULL); // // struct timeval diff_time; // timersub(&end_time, &start_time, &diff_time); // double time_conv_s = diff_time.tv_sec + diff_time.tv_usec * 1e-6; // double time_conv_ms = time_conv_s * 1000.0; // // double model_ops = (3*ix*iy*wx*wy*wz/L) + 2*ix*iy + ix*iy*iz; // double conv_ops_s = 1e-9 * model_ops / time_conv_s; // double conv_bandwidth_gb_s = 1e-9 * sz_input_bytes / (time_conv_ms / 1000.0); // double conv_bandwidth_gelement_s = 1e-9 * sz_input_elements / (time_conv_ms / 1000.0); // // printf("Execution Time (ms): %f\n", time_conv_ms); // printf("Binary Convolution OPS/s (GOPS/s): %f\n", conv_ops_s); // printf("Binary Convolution Bandwidth (GB/s): %f\n", conv_bandwidth_gb_s); // printf("Binary Convolution Bandwidth (GElements/s): %f\n\n", conv_bandwidth_gelement_s); // // free(binary_input); // free(binary_weights); // free(output); // free(beta); // free(alpha); // free(new_output); // free(new_beta); // // return time_conv_ms; //} // double ai2_bin_conv_benchmark(ConvolutionArgs conv_args); //void benchmark() { // int ix, iy, iz, wx, wy, wz; // iz = (1 << 9) * BITS_PER_BINARY_WORD; // ix = 227; // x == y for square face // iy = 227; // wx = 3; // x == y for a square face // wy = 3; // wz = iz; // // int runs = 1; // double accum_binary = 0; // double accum_real = 0; // ConvolutionArgs conv_args = initArgs(ix, iy, iz, wx, wy, wz); // for (int i = 0; i < runs; ++i) { // double t_binary_convolve = ai2_bin_conv_benchmark(conv_args); // double t_real_convolve = run_convolve2D_real(conv_args); // printf("t binary = %lf\n", t_binary_convolve); // printf("t real = %lf\n", t_real_convolve); // accum_binary += t_binary_convolve; // accum_real += t_real_convolve; // } // // accum_binary /= runs; // accum_real /= runs; // printf("Average convolution pass binary (ms): %lf\n", accum_binary); // printf("Average convolution pass flt (ms): %lf\n", accum_real); // printf("Speedup (Binary over Real): %lfx\n", accum_real / accum_binary); // exit(1); //} src/binary_convolution.h
New file @@ -0,0 +1,218 @@ #ifndef AI2_BINARY_CONVOLUTION_H #define AI2_BINARY_CONVOLUTION_H /** @file binary_convolution.h * @brief Routines related for approximating convolutions using binary operations * * @author Carlo C. del Mundo (carlom) * @date 05/23/2016 */ #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include <assert.h> #include <limits.h> #include <tgmath.h> #include <unistd.h> #include <stdint.h> #include <string.h> #include "common.h" typedef struct { int batch; // number of filter batches int c; // channels, z int h; // height, y int w; // width, x int stride; int pad; int px; // padded x (use this for striding in padded input and output arrays) int py; // padded y (use this for striding in padded input and output arrays) int wx; int wy; float *input; // input values BINARY_WORD *binary_input; float *weights; // weight or filter values BINARY_WORD *binary_weights; float *output; // output values BINARY_WORD *binary_output; float *alpha; // we assume alpha is calculated at the beginning of initialization float *beta; // we assume beta is given to us float *new_beta; // we calculate the new beta for the next layer struct ai2_bin_conv_layer *next; } ai2_bin_conv_layer; /** @brief Performs a binary convolution using XNOR and POPCOUNT between input and weights * * @param output A 2D real-valued plane to store the outputs * @param input A 2D binary-valued plane that holds the inputs * @param weights A 2D binary-valued plane that holds the weights * @param ix the input's x dimension * @param iy the input's y dimensions * @param wx the weight's x dimension * @param wy the weight's y dimension * @param pad the amount of padding applied to input. (ix+2*pad is the x dimension of the input * @param stride NOP. TODO: implement stride. the stride between sliding windows * @return the count of all overlapping set bits between the two volumes. */ void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride); /** @brief Performs a binary dot product (XNOR and POPCOUNT) for two equal sized volumes. * * @param a A 3D binary tensor * @param b A 3D binary tensor * @param vdim the dimensionality of the data. Note: we pack 32 elements in the Z element. * @return the count of all overlapping set bits between the two volumes. */ int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim); /** @brief Calculates the alpha plane given an alpha volume. * * Each point in the yz alpha plane * is the average sum of the absolute value of all elements in the z-direction. * * Pre-conditions: * alpha_volume is an array of size x*y*z. * alpha_plane is an array of size x*y. * alpha_volume (x,y,z) is transposed to (z,x,y). * * @param alpha_plane The 2D real-valued output plane * @param alpha_volume The 3D real-valued output volume * @param vdim the dimensionality of alpha_volume. */ void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim); /** @brief Wrapper function for generating the beta scaling factor */ void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim); /** @brief Set the bit in a binary word */ void ai2_bitset(BINARY_WORD *bword, unsigned int position); /** @brief Checks that the bit is set in a binary word */ int ai2_is_set(BINARY_WORD bword, unsigned int position) ; /** @brief Converts a 3D float tensor into a 3D binary tensor. * * The value of the ith element in the binary tensor is the sign * of the ith element in the floating tensor. * * @param binary_vol the binary tensor * @param real_vol the real tensor * @param vdim the size of the 3D tensor */ void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 vdim) ; /** @brief Converts a 3D binary tensor into a 3D float tensor. * * The ith float element will be '1' if the ith binary element is '1'. * Otherwise, the float element will be '-1'. * * @param real_vol the output real tensor * @param binary_vol the input binary tensor * @param vdim the dimension of both binary_vol and real_vol */ void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 vdim); /** @brief Performs a pointwise matrix multication between two 2D tensors * @param output A 2D real-valued plane to store the outputs * @param input A 2D binary-valued plane that holds the inputs * @param N the number of elements between the arrays */ void ai2_pointwise_mul_mm(float *output, const float *input, int N); /** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors * * Pre-conditions: wx < ix, and wy < iy * * @param output A 2D real-valued plane of size ix, iy * @param alpha A 2D binary-valued plane of size wx, wy * @param ix the output's x dimension * @param iy the output's y dimensions * @param wx the alpha's x dimension * @param wy the alpha's y dimension * @param pad how many cells are padded, adds 2*pad to the borders of the image */ void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad); // -------------------------------------- // SETTER FUNCTIONS // -------------------------------------- /** @brief Safe function to set the float input of a conv_layer */ void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input); /** @brief Safe function to set the binary input of a conv_layer */ void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input); /** @brief Safe function to set the binary weights of a conv_layer */ void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights); /** @brief Safe function to set the binary weights of a conv_layer */ void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights); /** @brief Safe function to set the binary outputs of a conv_layer */ void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output); /** @brief Safe function to set the binary outputs of a conv_layer */ void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output); /** @brief Safe function to set the alpha of a conv_layer */ void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha); /** @brief Safe function to set the beta of a conv_layer */ void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta); /** @brief Safe function to set the new_beta of a conv_layer */ void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta); // -------------------------------------- // GETTER FUNCTIONS // -------------------------------------- /** @brief Safe function to get the float outputs of a conv_layer */ float * ai2_getFltOutput(ai2_bin_conv_layer *layer); /** @brief 3D tranpose from (x,y,z) to (z,y,x) * @return a new pointer with the transposed matrix */ void ai2_transpose3D(float *data, dim3 d); /** @brief Checks if a float is a whole number (e.g., an int) */ int ai2_isFloatWhole(float f); /* @brief Allocates all memory objects in an ai2_bin_conv_layer * b - batches (number of filter batches) * c - input channels * ix - input width * iy - input height * wx - weight/filter width * wy - weight/filter height * s - stride between sliding windows * pad - the amount of padding */ ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad); /* @brief Safe deallocation of all memory objects in an ai2_bin_conv_layer */ void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer); /* @brief Given real-valued filter data and a conv layer, performs a forward pass */ void ai2_bin_forward(ai2_bin_conv_layer *layer); #endif src/common.c
New file @@ -0,0 +1,81 @@ #include "common.h" // Returns the time in ms double getElapsedTime(Timer *timer) { // Calculate time it took in seconds double accum_ms = ( timer->requestEnd.tv_sec - timer->requestStart.tv_sec ) + ( timer->requestEnd.tv_nsec - timer->requestStart.tv_nsec ) / 1e6; return accum_ms; } void start_timer(Timer *timer) { clock_gettime(CLOCK_MONOTONIC_RAW, &(timer->requestStart)); } void stop_timer(Timer *timer) { clock_gettime(CLOCK_MONOTONIC_RAW, &(timer->requestEnd)); } BINARY_WORD * mallocBinaryVolume(dim3 vol) { return (BINARY_WORD *) malloc (vol.x * vol.y * vol.z / BITS_PER_BINARY_WORD * sizeof(BINARY_WORD)); } float * mallocFloatVolume(dim3 vol) { return (float *) malloc (vol.x * vol.y * vol.z * sizeof(float)); } // Returns the size (in bytes) of a binary array with dimensions stored in conv_args double getSizeBytesBinaryArray(dim3 conv_args) { return conv_args.x * conv_args.y * conv_args.z * sizeof(BINARY_WORD) / (BITS_PER_BINARY_WORD); } ConvolutionArgs initArgs(size_t ix, size_t iy, size_t iz, size_t wx, size_t wy, size_t wz) { ConvolutionArgs conv_args; // Input Volume conv_args.input.x = ix; // x == y for a square face conv_args.input.y = iy; conv_args.input.z = iz; conv_args.weights.x = wx; // x == y for square face conv_args.weights.y = wy; conv_args.weights.z = wz; // <!-- DO NOT MODIFY --> // Intermediate Volumes conv_args.alpha_plane.x = conv_args.weights.x; conv_args.alpha_plane.y = conv_args.weights.y; conv_args.alpha_plane.z = 1; conv_args.beta_plane.x = 1; conv_args.beta_plane.y = conv_args.input.y; conv_args.beta_plane.z = conv_args.input.z; conv_args.gamma_plane.x = conv_args.input.x * conv_args.weights.x; conv_args.gamma_plane.y = conv_args.input.y * conv_args.weights.y; conv_args.gamma_plane.z = 1; conv_args.zeta_plane.x = conv_args.gamma_plane.x; conv_args.zeta_plane.y = conv_args.gamma_plane.y; conv_args.zeta_plane.z = 1; // Output Volume conv_args.output.x = conv_args.input.x; conv_args.output.y = conv_args.input.y; conv_args.output.z = 1; // Output should be a 2D plane // Verify dimensions //assert(conv_args.weights.x % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints // assert(conv_args.weights.y % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints assert(conv_args.weights.z % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints //assert(conv_args.input.x % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints // assert(conv_args.input.y % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints assert(conv_args.input.z % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints assert(conv_args.weights.x <= conv_args.input.x); assert(conv_args.weights.y <= conv_args.input.y); assert(conv_args.weights.z <= conv_args.input.z); // <!-- DO NOT MODIFY --> return conv_args; } src/common.h
New file @@ -0,0 +1,50 @@ #ifndef AI2_COMMON_H #define AI2_COMMON_H #include <time.h> #include <stdlib.h> #include <stdio.h> #include <inttypes.h> #include <assert.h> #include <limits.h> #include <tgmath.h> #include <unistd.h> #include <stdint.h> //#include <gperftools/profiler.h> #include <sys/time.h> typedef uint32_t BINARY_WORD; #define BITS_PER_BINARY_WORD (sizeof(BINARY_WORD) * CHAR_BIT) typedef struct{ struct timespec requestStart; struct timespec requestEnd; } Timer; typedef struct { size_t x; size_t y; size_t z; } dim3; typedef struct { dim3 weights; dim3 input; dim3 output; dim3 alpha_plane; dim3 beta_plane; dim3 gamma_plane; dim3 zeta_plane; } ConvolutionArgs; // Timer stuff double getElapsedTime(Timer *timer); // Returns the time in ms void start_timer(Timer *timer); void stop_timer(Timer *timer); BINARY_WORD * mallocBinaryVolume(dim3 vol); float * mallocFloatVolume(dim3 vol); ConvolutionArgs initArgs(size_t ix, size_t iy, size_t iz, size_t wx, size_t wy, size_t wz); double getSizeBytesBinaryArray(dim3 conv_args); #endif src/convolutional_layer.c
@@ -8,6 +8,10 @@ #include <stdio.h> #include <time.h> #ifndef AI2 #define AI2 0 #endif void swap_binary(convolutional_layer *l) { float *swap = l->filters; @@ -21,24 +25,6 @@ #endif } void binarize_filters2(float *filters, int n, int size, char *binary, float *scales) { int i, k, f; for(f = 0; f < n; ++f){ float mean = 0; for(i = 0; i < size; ++i){ mean += fabs(filters[f*size + i]); } mean = mean / size; scales[f] = mean; for(i = 0; i < size/8; ++i){ binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0; for(k = 0; k < 8; ++k){ } } } } void binarize_filters(float *filters, int n, int size, float *binary) { int i, f; @@ -54,6 +40,21 @@ } } void binarize_input(float *input, int n, int size, float *binary) { int i, s; for(s = 0; s < size; ++s){ float mean = 0; for(i = 0; i < n; ++i){ mean += fabs(input[i*size + s]); } mean = mean / n; for(i = 0; i < n; ++i){ binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; } } } int convolutional_out_height(convolutional_layer l) { int h = l.h; @@ -133,6 +134,7 @@ l.c = c; l.n = n; l.binary = binary; l.xnor = xnor; l.batch = batch; l.stride = stride; l.size = size; @@ -164,6 +166,10 @@ l.cfilters = calloc(c*n*size*size, sizeof(char)); l.scales = calloc(n, sizeof(float)); } if(xnor){ l.binary_filters = calloc(c*n*size*size, sizeof(float)); l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); } if(batch_normalize){ l.scales = calloc(n, sizeof(float)); @@ -199,7 +205,6 @@ l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size); l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); } l.xnor = xnor; if(batch_normalize){ l.mean_gpu = cuda_make_array(l.mean, n); @@ -404,7 +409,9 @@ int out_w = convolutional_out_width(l); int i; fill_cpu(l.outputs*l.batch, 0, l.output, 1); /* if(l.binary){ binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters); @@ -437,10 +444,24 @@ } */ if(l.xnor && (l.c%32 != 0 || !AI2)){ binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters); swap_binary(&l); for(i = 0; i < l.batch; ++i){ binarize_input(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input + i*l.inputs); } state.input = l.binary_input; } int m = l.n; int k = l.size*l.size*l.c; int n = out_h*out_w; if (l.xnor && l.c%32 == 0 && AI2) { forward_xnor_layer(l, state); printf("xnor\n"); } else { float *a = l.filters; float *b = state.workspace; float *c = l.output; @@ -452,6 +473,7 @@ c += n*m; state.input += l.c*l.h*l.w; } } if(l.batch_normalize){ forward_batchnorm_layer(l, state); @@ -459,6 +481,7 @@ add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); activate_array(l.output, m*n*l.batch, l.activation); if(l.binary || l.xnor) swap_binary(&l); } void backward_convolutional_layer(convolutional_layer l, network_state state) src/layer.h
@@ -167,6 +167,8 @@ float *r_cpu; float *h_cpu; float *binary_input; size_t workspace_size; #ifdef GPU src/parser.c
@@ -1021,7 +1021,6 @@ } } } binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales); #ifdef GPU if(gpu_index >= 0){ push_convolutional_layer(l); @@ -1046,7 +1045,7 @@ if (l.flipped) { transpose_matrix(l.filters, l.c*l.size*l.size, l.n); } if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters); //if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters); #ifdef GPU if(gpu_index >= 0){ push_convolutional_layer(l); src/xnor_layer.c
New file @@ -0,0 +1,86 @@ #include "xnor_layer.h" #include "binary_convolution.h" #include "convolutional_layer.h" layer make_xnor_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize) { int i; layer l = {0}; l.type = XNOR; l.h = h; l.w = w; l.c = c; l.n = n; l.batch = batch; l.stride = stride; l.size = size; l.pad = pad; l.batch_normalize = batch_normalize; l.filters = calloc(c*n*size*size, sizeof(float)); l.biases = calloc(n, sizeof(float)); int out_h = convolutional_out_height(l); int out_w = convolutional_out_width(l); l.out_h = out_h; l.out_w = out_w; l.out_c = n; l.outputs = l.out_h * l.out_w * l.out_c; l.inputs = l.w * l.h * l.c; l.output = calloc(l.batch*out_h * out_w * n, sizeof(float)); if(batch_normalize){ l.scales = calloc(n, sizeof(float)); for(i = 0; i < n; ++i){ l.scales[i] = 1; } l.mean = calloc(n, sizeof(float)); l.variance = calloc(n, sizeof(float)); l.rolling_mean = calloc(n, sizeof(float)); l.rolling_variance = calloc(n, sizeof(float)); } l.activation = activation; fprintf(stderr, "XNOR Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); return l; } void forward_xnor_layer(const layer l, network_state state) { int b = l.n; int c = l.c; int ix = l.w; int iy = l.h; int wx = l.size; int wy = l.size; int s = l.stride; int pad = l.pad * (l.size/2); // MANDATORY: Make the binary layer ai2_bin_conv_layer al = ai2_make_bin_conv_layer(b, c, ix, iy, wx, wy, s, pad); // OPTIONAL: You need to set the real-valued input like: ai2_setFltInput(&al, state.input); // The above function will automatically binarize the input for the layer (channel wise). // If commented: using the default 0-valued input. ai2_setFltWeights(&al, l.filters); // The above function will automatically binarize the input for the layer (channel wise). // If commented: using the default 0-valued weights. // MANDATORY: Call forward ai2_bin_forward(&al); // OPTIONAL: Inspect outputs float *output = ai2_getFltOutput(&al); // output is of size l.px * l.py where px and py are the padded outputs memcpy(l.output, output, l.outputs*sizeof(float)); // MANDATORY: Free layer ai2_free_bin_conv_layer(&al); } src/xnor_layer.h
New file @@ -0,0 +1,11 @@ #ifndef XNOR_LAYER_H #define XNOR_LAYER_H #include "layer.h" #include "network.h" layer make_xnor_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization); void forward_xnor_layer(const layer l, network_state state); #endif src/yolo.c
@@ -346,8 +346,8 @@ if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); show_image(im, "predictions"); save_image(im, "predictions"); show_image(im, "predictions"); show_image(sized, "resized"); free_image(im);