Improved speed of yolo_console_dll.cpp - 40 FPS on 4K using GeForce GTX 960
| | |
| | | protocol == "rtsp://" || protocol == "http://" || protocol == "https:/") // video network stream |
| | | { |
| | | cv::Mat cap_frame, cur_frame, det_frame, write_frame; |
| | | std::shared_ptr<image_t> det_image; |
| | | std::vector<bbox_t> result_vec, thread_result_vec; |
| | | detector.nms = 0.02; // comment it - if track_id is not required |
| | | std::atomic<bool> consumed, videowrite_ready; |
| | |
| | | std::chrono::steady_clock::time_point steady_start, steady_end; |
| | | cv::VideoCapture cap(filename); cap >> cur_frame; |
| | | int const video_fps = cap.get(CV_CAP_PROP_FPS); |
| | | cv::Size const frame_size = cur_frame.size(); |
| | | cv::VideoWriter output_video; |
| | | if (save_output_videofile) |
| | | output_video.open(out_videofile, CV_FOURCC('D', 'I', 'V', 'X'), std::max(35, video_fps), cur_frame.size(), true); |
| | | output_video.open(out_videofile, CV_FOURCC('D', 'I', 'V', 'X'), std::max(35, video_fps), frame_size, true); |
| | | |
| | | while (!cur_frame.empty()) { |
| | | if (t_cap.joinable()) { |
| | |
| | | if(consumed) |
| | | { |
| | | std::unique_lock<std::mutex> lock(mtx); |
| | | cur_frame.copyTo(det_frame); |
| | | det_image = detector.mat_to_image_resize(cur_frame); |
| | | result_vec = thread_result_vec; |
| | | result_vec = detector.tracking(result_vec); // comment it - if track_id is not required |
| | | consumed = false; |
| | |
| | | // launch thread once |
| | | if (!t_detect.joinable()) { |
| | | t_detect = std::thread([&]() { |
| | | cv::Mat current_mat = det_frame.clone(); |
| | | auto current_image = det_image; |
| | | consumed = true; |
| | | while (!current_mat.empty()) { |
| | | auto result = detector.detect(current_mat, 0.24, true); |
| | | while (current_image.use_count() > 0) { |
| | | auto result = detector.detect_resized(*current_image, frame_size, 0.24, true); |
| | | ++fps_det_counter; |
| | | std::unique_lock<std::mutex> lock(mtx); |
| | | thread_result_vec = result; |
| | | current_mat = det_frame.clone(); |
| | | current_image = det_image; |
| | | consumed = true; |
| | | cv.notify_all(); |
| | | } |
| | |
| | | #endif |
| | | } |
| | | |
| | | YOLODLL_API int Detector::get_net_width() { |
| | | YOLODLL_API int Detector::get_net_width() const { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.w; |
| | | } |
| | | YOLODLL_API int Detector::get_net_height() { |
| | | YOLODLL_API int Detector::get_net_height() const { |
| | | detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.h; |
| | | } |
| | |
| | | YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false); |
| | | static YOLODLL_API image_t load_image(std::string image_filename); |
| | | static YOLODLL_API void free_image(image_t m); |
| | | YOLODLL_API int get_net_width(); |
| | | YOLODLL_API int get_net_height(); |
| | | YOLODLL_API int get_net_width() const; |
| | | YOLODLL_API int get_net_height() const; |
| | | |
| | | YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6); |
| | | |
| | |
| | | std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false) |
| | | { |
| | | if(mat.data == NULL) |
| | | throw std::runtime_error("file not found"); |
| | | cv::Mat det_mat; |
| | | cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height())); |
| | | auto image_ptr = mat_to_image(det_mat); |
| | | auto detection_boxes = detect(*image_ptr, thresh, use_mean); |
| | | float wk = (float)mat.cols / det_mat.cols, hk = (float)mat.rows / det_mat.rows; |
| | | throw std::runtime_error("Image is empty"); |
| | | auto image_ptr = mat_to_image_resize(mat); |
| | | return detect_resized(*image_ptr, mat.size(), thresh, use_mean); |
| | | } |
| | | |
| | | std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false) |
| | | { |
| | | if (img.data == NULL) |
| | | throw std::runtime_error("Image is empty"); |
| | | auto detection_boxes = detect(img, thresh, use_mean); |
| | | float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h; |
| | | for (auto &i : detection_boxes) i.x*=wk, i.w*= wk, i.y*=hk, i.h*=hk; |
| | | return detection_boxes; |
| | | } |
| | | |
| | | std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const |
| | | { |
| | | if (mat.data == NULL) return std::shared_ptr<image_t>(NULL); |
| | | cv::Mat det_mat; |
| | | cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height())); |
| | | return mat_to_image(det_mat); |
| | | } |
| | | |
| | | static std::shared_ptr<image_t> mat_to_image(cv::Mat img) |
| | | { |
| | | std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; }); |