| | |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, m, labels, 2, 256, 256); |
| | | data train = load_data(paths, imgs*net.batch, m, labels, 2, 256, 256); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | data train, buffer; |
| | | pthread_t load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | pthread_t load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | |
| | |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | network net = parse_network_cfg("cfg/net.part"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | //imgs=1; |
| | | int i = 0; |
| | | int i = 9540; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | normalize_data_rows(train); |
| | | load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer); |
| | | load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | |
| | | |
| | | void validate_imagenet(char *filename) |
| | | { |
| | | int i; |
| | | int i = 0; |
| | | network net = parse_network_cfg(filename); |
| | | srand(time(0)); |
| | | |
| | |
| | | float avg_acc = 0; |
| | | float avg_top5 = 0; |
| | | int splits = 50; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | for(i = 0; i < splits; ++i){ |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 224, 224, &buffer); |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | char **part = paths+(i*m/splits); |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | data val = load_data(part, num, labels, 1000, 224, 224); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | normalize_data_rows(val); |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 224, 224, &buffer); |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float *acc = network_accuracies_gpu(net, val); |
| | | avg_acc += acc[0]; |
| | | avg_top5 += acc[1]; |
| | | printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/(i+1), avg_top5/(i+1), sec(clock()-time), val.X.rows); |
| | | printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows); |
| | | #endif |
| | | free_data(val); |
| | | } |
| | |
| | | int count = 0; |
| | | |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/alexnet.test"); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224,224); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | |
| | | #ifdef GPU |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/alexnet.test"); |
| | | net = parse_network_cfg("cfg/net.cfg"); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | |
| | | return d; |
| | | } |
| | | |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w) |
| | | { |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, h, w); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w) |
| | | char **get_random_paths(char **paths, int n, int m) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d = load_data(random_paths, n, labels, k, h, w); |
| | | free(random_paths); |
| | | return random_paths; |
| | | } |
| | | |
| | | data load_data(char **paths, int n, int m, char **labels, int k, int h, int w) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, h, w); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | if(m) free(paths); |
| | | return d; |
| | | } |
| | | |
| | | struct load_args{ |
| | | int n; |
| | | char **paths; |
| | | int n; |
| | | int m; |
| | | char **labels; |
| | | int k; |
| | |
| | | void *load_in_thread(void *ptr) |
| | | { |
| | | struct load_args a = *(struct load_args*)ptr; |
| | | *a.d = load_data_random(a.n, a.paths, a.m, a.labels, a.k, a.h, a.w); |
| | | *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w); |
| | | return 0; |
| | | } |
| | | |
| | | pthread_t load_data_random_thread(int n, char **paths, int m, char **labels, int k, int h, int w, data *d) |
| | | pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d) |
| | | { |
| | | pthread_t thread; |
| | | struct load_args *args = calloc(1, sizeof(struct load_args)); |
| | |
| | | |
| | | |
| | | void free_data(data d); |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w); |
| | | pthread_t load_data_random_thread(int n, char **paths, int m, char **labels, int k, int h, int w, data *d); |
| | | data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w); |
| | | |
| | | data load_data(char **paths, int n, int m, char **labels, int k, int h, int w); |
| | | pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d); |
| | | |
| | | data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale); |
| | | data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale); |
| | | data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w); |
| | |
| | | layer->probability = probability; |
| | | layer->inputs = inputs; |
| | | layer->batch = batch; |
| | | #ifdef GPU |
| | | layer->rand = calloc(inputs*batch, sizeof(float)); |
| | | layer->scale = 1./(1.-probability); |
| | | #ifdef GPU |
| | | layer->rand_cl = cl_make_array(layer->rand, inputs*batch); |
| | | #endif |
| | | return layer; |
| | |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch * layer.inputs; ++i){ |
| | | if(rand_uniform() < layer.probability) input[i] = 0; |
| | | else input[i] /= (1-layer.probability); |
| | | float r = rand_uniform(); |
| | | layer.rand[i] = r; |
| | | if(r < layer.probability) input[i] = 0; |
| | | else input[i] *= layer.scale; |
| | | } |
| | | } |
| | | void backward_dropout_layer(dropout_layer layer, float *input, float *delta) |
| | | |
| | | void backward_dropout_layer(dropout_layer layer, float *delta) |
| | | { |
| | | // Don't do shit LULZ |
| | | int i; |
| | | for(i = 0; i < layer.batch * layer.inputs; ++i){ |
| | | float r = layer.rand[i]; |
| | | if(r < layer.probability) delta[i] = 0; |
| | | else delta[i] *= layer.scale; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/dropout_layer.cl", "forward", 0); |
| | | kernel = get_kernel("src/dropout_layer.cl", "yoloswag420blazeit360noscope", 0); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {size}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta) |
| | | { |
| | | int size = layer.inputs*layer.batch; |
| | | |
| | | cl_kernel kernel = get_dropout_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability); |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {size}; |
| | |
| | | __kernel void forward(__global float *input, __global float *rand, float prob) |
| | | __kernel void yoloswag420blazeit360noscope(__global float *input, __global float *rand, float prob, float scale) |
| | | { |
| | | int id = get_global_id(0); |
| | | input[id] = (rand[id] < prob) ? 0 : input[id]/(1.-prob); |
| | | input[id] = (rand[id] < prob) ? 0 : input[id]*scale; |
| | | } |
| | |
| | | int batch; |
| | | int inputs; |
| | | float probability; |
| | | #ifdef GPU |
| | | float scale; |
| | | float *rand; |
| | | #ifdef GPU |
| | | cl_mem rand_cl; |
| | | #endif |
| | | } dropout_layer; |
| | |
| | | dropout_layer *make_dropout_layer(int batch, int inputs, float probability); |
| | | |
| | | void forward_dropout_layer(dropout_layer layer, float *input); |
| | | void backward_dropout_layer(dropout_layer layer, float *input, float *delta); |
| | | #ifdef GPU |
| | | void backward_dropout_layer(dropout_layer layer, float *delta); |
| | | |
| | | #ifdef GPU |
| | | void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input); |
| | | void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta); |
| | | |
| | | #endif |
| | | #endif |
| | |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); |
| | |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | backward_maxpool_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | backward_softmax_layer_gpu(layer, prev_delta); |