| | |
| | | GPU=0 |
| | | OPENCV=0 |
| | | GPU=1 |
| | | OPENCV=1 |
| | | DEBUG=0 |
| | | |
| | | ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 |
| | |
| | | LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand |
| | | endif |
| | | |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o |
| | | OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo2.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o |
| | | ifeq ($(GPU), 1) |
| | | LDFLAGS+= -lstdc++ |
| | | OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_batchnorm_layer(layer l) |
| | | { |
| | | cuda_pull_array(l.scales_gpu, l.scales, l.c); |
| | | cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c); |
| | | cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c); |
| | | } |
| | | void push_batchnorm_layer(layer l) |
| | | { |
| | | cuda_push_array(l.scales_gpu, l.scales, l.c); |
| | | cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c); |
| | | cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c); |
| | | } |
| | | |
| | | void forward_batchnorm_layer_gpu(layer l, network_state state) |
| | | { |
| | | if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
| | |
| | | #ifdef GPU |
| | | void forward_batchnorm_layer_gpu(layer l, network_state state); |
| | | void backward_batchnorm_layer_gpu(layer l, network_state state); |
| | | void pull_batchnorm_layer(layer l); |
| | | void push_batchnorm_layer(layer l); |
| | | #endif |
| | | |
| | | #endif |
| | |
| | | free(boxes); |
| | | } |
| | | |
| | | void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy) |
| | | void fill_truth_detection(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) |
| | | { |
| | | char *labelpath = find_replace(path, "JPEGImages", "labels"); |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPG", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | int count = 0; |
| | | box_label *boxes = read_boxes(labelpath, &count); |
| | | randomize_boxes(boxes, count); |
| | | correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
| | | if(count > 17) count = 17; |
| | | float x,y,w,h; |
| | | float left, top, right, bot; |
| | | int id; |
| | | int i; |
| | | if(background){ |
| | | for(i = 0; i < num_boxes*num_boxes*(4+classes+background); i += 4+classes+background){ |
| | | truth[i] = 1; |
| | | } |
| | | } |
| | | for(i = 0; i < count; ++i){ |
| | | left = boxes[i].left * sx - dx; |
| | | right = boxes[i].right * sx - dx; |
| | | top = boxes[i].top * sy - dy; |
| | | bot = boxes[i].bottom* sy - dy; |
| | | |
| | | for (i = 0; i < count; ++i) { |
| | | x = boxes[i].x; |
| | | y = boxes[i].y; |
| | | w = boxes[i].w; |
| | | h = boxes[i].h; |
| | | id = boxes[i].id; |
| | | |
| | | if(flip){ |
| | | float swap = left; |
| | | left = 1. - right; |
| | | right = 1. - swap; |
| | | } |
| | | |
| | | left = constrain(0, 1, left); |
| | | right = constrain(0, 1, right); |
| | | top = constrain(0, 1, top); |
| | | bot = constrain(0, 1, bot); |
| | | |
| | | x = (left+right)/2; |
| | | y = (top+bot)/2; |
| | | w = (right - left); |
| | | h = (bot - top); |
| | | |
| | | if (x <= 0 || x >= 1 || y <= 0 || y >= 1) continue; |
| | | |
| | | int col = (int)(x*num_boxes); |
| | | int row = (int)(y*num_boxes); |
| | | |
| | | x = x*num_boxes - col; |
| | | y = y*num_boxes - row; |
| | | |
| | | /* |
| | | float maxwidth = distance_from_edge(i, num_boxes); |
| | | float maxheight = distance_from_edge(j, num_boxes); |
| | | w = w/maxwidth; |
| | | h = h/maxheight; |
| | | */ |
| | | |
| | | w = constrain(0, 1, w); |
| | | h = constrain(0, 1, h); |
| | | if (w < .01 || h < .01) continue; |
| | | if(1){ |
| | | w = pow(w, 1./2.); |
| | | h = pow(h, 1./2.); |
| | | } |
| | | |
| | | int index = (col+row*num_boxes)*(4+classes+background); |
| | | if(truth[index+classes+background+2]) continue; |
| | | if(background) truth[index++] = 0; |
| | | truth[index+id] = 1; |
| | | index += classes; |
| | | truth[index++] = x; |
| | | truth[index++] = y; |
| | | truth[index++] = w; |
| | | truth[index++] = h; |
| | | truth[i*5] = id; |
| | | truth[i*5+2] = x; |
| | | truth[i*5+3] = y; |
| | | truth[i*5+4] = w; |
| | | truth[i*5+5] = h; |
| | | } |
| | | free(boxes); |
| | | } |
| | |
| | | d.X.vals = calloc(d.X.rows, sizeof(float*)); |
| | | d.X.cols = h*w*3; |
| | | |
| | | |
| | | int k = size*size*(5+classes); |
| | | d.y = make_matrix(n, k); |
| | | for(i = 0; i < n; ++i){ |
| | |
| | | return d; |
| | | } |
| | | |
| | | data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background) |
| | | data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter) |
| | | { |
| | | char **random_paths = get_random_paths(paths, n, m); |
| | | int i; |
| | |
| | | d.X.vals = calloc(d.X.rows, sizeof(float*)); |
| | | d.X.cols = h*w*3; |
| | | |
| | | int k = num_boxes*num_boxes*(4+classes+background); |
| | | d.y = make_matrix(n, k); |
| | | d.y = make_matrix(n, 5*boxes); |
| | | for(i = 0; i < n; ++i){ |
| | | image orig = load_image_color(random_paths[i], 0, 0); |
| | | |
| | | int oh = orig.h; |
| | | int ow = orig.w; |
| | | |
| | | int dw = ow/10; |
| | | int dh = oh/10; |
| | | int dw = (ow*jitter); |
| | | int dh = (oh*jitter); |
| | | |
| | | int pleft = rand_uniform(-dw, dw); |
| | | int pright = rand_uniform(-dw, dw); |
| | |
| | | float sx = (float)swidth / ow; |
| | | float sy = (float)sheight / oh; |
| | | |
| | | /* |
| | | float angle = rand_uniform()*.1 - .05; |
| | | image rot = rotate_image(orig, angle); |
| | | free_image(orig); |
| | | orig = rot; |
| | | */ |
| | | |
| | | int flip = rand_r(&data_seed)%2; |
| | | image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
| | | |
| | |
| | | if(flip) flip_image(sized); |
| | | d.X.vals[i] = sized.data; |
| | | |
| | | fill_truth_detection(random_paths[i], d.y.vals[i], classes, num_boxes, flip, background, dx, dy, 1./sx, 1./sy); |
| | | fill_truth_detection(random_paths[i], d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy); |
| | | |
| | | free_image(orig); |
| | | free_image(cropped); |
| | |
| | | return d; |
| | | } |
| | | |
| | | |
| | | void *load_thread(void *ptr) |
| | | { |
| | | |
| | |
| | | } else if (a.type == STUDY_DATA){ |
| | | *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size); |
| | | } else if (a.type == DETECTION_DATA){ |
| | | *a.d = load_data_detection(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background); |
| | | *a.d = load_data_detection(a.n, a.num_boxes, a.paths, a.m, a.classes, a.w, a.h, a.background); |
| | | } else if (a.type == WRITING_DATA){ |
| | | *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); |
| | | } else if (a.type == REGION_DATA){ |
| | |
| | | matrix y; |
| | | int *indexes; |
| | | int shallow; |
| | | int *num_boxes; |
| | | box **boxes; |
| | | } data; |
| | | |
| | | typedef enum { |
| | | CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA |
| | | CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA |
| | | } data_type; |
| | | |
| | | typedef struct load_args{ |
| | |
| | | data load_data_captcha(char **paths, int n, int m, int k, int w, int h); |
| | | data load_data_captcha_encode(char **paths, int n, int m, int w, int h); |
| | | data load_data(char **paths, int n, int m, char **labels, int k, int w, int h); |
| | | data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background); |
| | | data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter); |
| | | data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size); |
| | | data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size); |
| | | data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size); |
| | |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | |
| | | void save_batchnorm_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_batchnorm_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.scales, sizeof(float), l.c, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.c, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.c, fp); |
| | | } |
| | | |
| | | void save_connected_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | |
| | | save_convolutional_weights(l, fp); |
| | | } if(l.type == CONNECTED){ |
| | | save_connected_weights(l, fp); |
| | | } if(l.type == BATCHNORM){ |
| | | save_batchnorm_weights(l, fp); |
| | | } if(l.type == RNN){ |
| | | save_connected_weights(*(l.input_layer), fp); |
| | | save_connected_weights(*(l.self_layer), fp); |
| | |
| | | if(transpose){ |
| | | transpose_matrix(l.weights, l.inputs, l.outputs); |
| | | } |
| | | //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
| | | //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
| | | //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
| | | //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | |
| | | #endif |
| | | } |
| | | |
| | | void load_batchnorm_weights(layer l, FILE *fp) |
| | | { |
| | | fread(l.scales, sizeof(float), l.c, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.c, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.c, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_batchnorm_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights_binary(layer l, FILE *fp) |
| | | { |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | |
| | | if(l.type == CONNECTED){ |
| | | load_connected_weights(l, fp, transpose); |
| | | } |
| | | if(l.type == BATCHNORM){ |
| | | load_batchnorm_weights(l, fp); |
| | | } |
| | | if(l.type == CRNN){ |
| | | load_convolutional_weights(*(l.input_layer), fp); |
| | | load_convolutional_weights(*(l.self_layer), fp); |
| | |
| | | printf("\n"); |
| | | } |
| | | |
| | | void valid_char_rnn(char *cfgfile, char *weightfile) |
| | | void valid_char_rnn(char *cfgfile, char *weightfile, char *seed) |
| | | { |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | |
| | | |
| | | int count = 0; |
| | | int c; |
| | | int len = strlen(seed); |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 100; ++i){ |
| | | for(i = 0; i < len; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | float sum = 0; |
| | | c = getc(stdin); |
| | | float log2 = log(2); |
| | | while(c != EOF){ |
| | | int next = getc(stdin); |
| | | if(next < 0 || next >= 255) error("Out of range character"); |
| | | if(next == EOF) break; |
| | | if(next < 0 || next >= 255) error("Out of range character"); |
| | | ++count; |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | |
| | | } |
| | | } |
| | | |
| | | void vec_char_rnn(char *cfgfile, char *weightfile, char *seed) |
| | | { |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int c; |
| | | int seed_len = strlen(seed); |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | int i; |
| | | char *line; |
| | | while((line=fgetl(stdin)) != 0){ |
| | | reset_rnn_state(net, 0); |
| | | for(i = 0; i < seed_len; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | strip(line); |
| | | int str_len = strlen(line); |
| | | for(i = 0; i < str_len; ++i){ |
| | | c = line[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | c = ' '; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | |
| | | layer l = net.layers[0]; |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs); |
| | | printf("%s", line); |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | printf(",%g", l.output[i]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | } |
| | | |
| | | void run_char_rnn(int argc, char **argv) |
| | | { |
| | |
| | | return; |
| | | } |
| | | char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); |
| | | char *seed = find_char_arg(argc, argv, "-seed", "\n"); |
| | | char *seed = find_char_arg(argc, argv, "-seed", "\n\n"); |
| | | int len = find_int_arg(argc, argv, "-len", 1000); |
| | | float temp = find_float_arg(argc, argv, "-temp", .7); |
| | | int rseed = find_int_arg(argc, argv, "-srand", time(0)); |
| | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | } |