Alexey
2018-03-30 a0dc4d717ab2d95e5e90f5b7b6344e8074b81606
Update Readme.md
1 files modified
4 ■■■ changed files
README.md 4 ●●● patch | view | raw | blame | history
README.md
@@ -219,7 +219,7 @@
1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74`
2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3`
2. Then stop and by using partially-trained model `/backup/yolov3-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3`
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
@@ -305,6 +305,8 @@
 * Also you can get result earlier than all 45000 iterations.
 
 **Note:** If during training you see `nan` values in some lines then training goes well, but if `nan` are in all lines then training goes wrong.
### How to train tiny-yolo (to detect your custom objects):
Do all the same steps as for the full yolo model as described above. With the exception of: