Bug fixes. Tested im2col_cpu_custom_transpose - bad way.
| | |
| | | } |
| | | } |
| | | |
| | | void binary_align_weights(convolutional_layer *l, size_t lda_align) |
| | | void binary_align_weights(convolutional_layer *l) |
| | | { |
| | | int m = l->n; |
| | | int k = l->size*l->size*l->c; |
| | | size_t new_lda = k + (lda_align - k%lda_align); // (k / 8 + 1) * 8; |
| | | size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8; |
| | | |
| | | binarize_weights(l->weights, m, k, l->binary_weights); |
| | | |
| | |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | //im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | //float *t_input = NULL; |
| | | //if (l.xnor) { |
| | | // size_t new_ldb = k + (l.lda_align - k%l.lda_align); |
| | | // size_t t_intput_size = new_ldb * n; |
| | | // t_input = calloc(t_intput_size, sizeof(float)); |
| | | // im2col_cpu_custom_transpose(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, t_input, new_ldb); |
| | | //} |
| | | //else |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | |
| | | free(align_weights); |
| | | } |
| | | */ |
| | | size_t ldb_align = 256; // 256 bit for AVX2 |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
| | | |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | /* |
| | | if (l.size == 3 && l.stride == 1 && l.pad == 1) { |
| | | convolution_2d(l.w, l.h, l.size, l.n, l.c, l.pad, l.stride, |
| | | l.weights, state.input, l.output); |
| | | } |
| | | else { |
| | | */ |
| | | //size_t ldb_align = 256; // 256 bit for AVX2 |
| | | int ldb_align = l.lda_align; |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //free(t_input); |
| | | free(t_bit_input); |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | |
| | | //free(align_bit_weights); |
| | | //free(t_input); |
| | | free(t_bit_input); |
| | | //} |
| | | |
| | | } |
| | | |
| | | // for bit_input: (k * n) |
| | |
| | | void swap_binary(convolutional_layer *l); |
| | | void binarize_weights2(float *weights, int n, int size, char *binary, float *scales); |
| | | |
| | | void binary_align_weights(convolutional_layer *l, size_t ldb_align); |
| | | void binary_align_weights(convolutional_layer *l); |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, network_state state); |
| | | |
| | |
| | | } |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | // channel index |
| | | for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w; ++x) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | float sum = 0; |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | |
| | | sum += input[input_index] * weights[weights_index]; |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | output[output_index] += sum; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register |
| | | // https://arxiv.org/pdf/1611.07612.pdf |
| | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_transpose(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int ldb_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 4; w+=8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | data_col[col_index + ldb_align * 0] = src256.m256_f32[0]; |
| | | data_col[col_index + ldb_align * 1] = src256.m256_f32[1]; |
| | | data_col[col_index + ldb_align * 2] = src256.m256_f32[2]; |
| | | data_col[col_index + ldb_align * 3] = src256.m256_f32[3]; |
| | | data_col[col_index + ldb_align * 4] = src256.m256_f32[4]; |
| | | data_col[col_index + ldb_align * 5] = src256.m256_f32[5]; |
| | | data_col[col_index + ldb_align * 6] = src256.m256_f32[6]; |
| | | data_col[col_index + ldb_align * 7] = src256.m256_f32[7]; |
| | | |
| | | //_mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = 0; h < height_col; ++h) { |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h * stride; |
| | | int im_col = w_offset + w * stride; |
| | | |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | |
| | | for (i = 0; i < n; i += 8) { |
| | | for (i = 0; i < n-8; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i])); |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | // channel index |
| | | for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w; ++x) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | float sum = 0; |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | |
| | | sum += input[input_index] * weights[weights_index]; |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | output[output_index] += sum; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | |
| | | } |
| | | } |
| | | |
| | | void im2col_cpu_custom_transpose(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int ldb_align) |
| | | { |
| | | printf("\n im2col_cpu_custom_transpose() isn't implemented without AVX \n"); |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | |
| | | #include <stdint.h> |
| | | #include <stddef.h> |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output); |
| | | |
| | | static inline void set_bit(unsigned char *const dst, size_t index) { |
| | | size_t dst_i = index / 8; |
| | | int dst_shift = index % 8; |
| | |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col); |
| | | |
| | | void im2col_cpu_custom_transpose(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int ldb_align); |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a); |
| | | |
| | | |
| | |
| | | |
| | | char *align_bit_weights; |
| | | float *mean_arr; |
| | | int lda_align; |
| | | |
| | | float *col_image; |
| | | int * input_layers; |
| | |
| | | |
| | | if (l->xnor) { |
| | | //printf("\n %d \n", j); |
| | | size_t ldb_align = 256; // 256bit for AVX2 |
| | | l->lda_align = 256; // 256bit for AVX2 |
| | | |
| | | binary_align_weights(l, ldb_align); |
| | | binary_align_weights(l); |
| | | } |
| | | } |
| | | } |